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True random number generators (TRNG) sample random phys-
ical processes to create large amounts of random numbers for
various use cases, including security-critical cryptographic prim-
itives, scienti�c simulations, machine learning applications, and
even recreational entertainment. Unfortunately, not every com-
puting system is equipped with dedicated TRNG hardware, lim-
iting the application space and security guarantees for such sys-
tems. To open the application space and enable security guar-
antees for the overwhelming majority of computing systems
that do not necessarily have dedicated TRNG hardware (e.g.,
processing-in-memory systems), we develop QUAC-TRNG, a new
high-throughput TRNG that can be fully implemented in com-
modity DRAM chips, which are key components in most modern
systems.
QUAC-TRNG exploits the new observation that a carefully-

engineered sequence of DRAM commands activates four con-
secutive DRAM rows in rapid succession. This QUadruple AC-
tivation (QUAC) causes the bitline sense ampli�ers to non-
deterministically converge to random values when we activate
four rows that store con�icting data because the net deviation in
bitline voltage fails to meet reliable sensing margins.

We experimentally demonstrate that QUAC reliably generates
random values across 136 commodity DDR4 DRAM chips from
one major DRAM manufacturer. We describe how to develop an
e�ective TRNG (QUAC-TRNG) based on QUAC. We evaluate the
quality of our TRNG using the commonly-used NIST statistical
test suite for randomness and �nd that QUAC-TRNG success-
fully passes each test. Our experimental evaluations show that
QUAC-TRNG reliably generates true random numbers with a
throughput of 3.44 Gb/s (per DRAM channel), outperforming
the state-of-the-art DRAM-based TRNG by 15.08× and 1.41×
for basic and throughput-optimized versions, respectively. We
show that QUAC-TRNG utilizes DRAM bandwidth better than
the state-of-the-art, achieving up to 2.03× the throughput of a
throughput-optimized baseline when scaling bus frequencies to
12 GT/s.

1. Introduction
True random numbers are used in a wide range of applica-

tions, including cryptography, scienti�c simulations, machine
learning, and recreational entertainment [14, 16, 18, 37, 46,
61, 85, 97, 109, 112, 127, 130, 132, 146, 151, 160, 161, 166, 169,
170]. These applications often require a high-throughput true
random number generator (TRNG) that is resilient to varia-
tions in operating conditions (e.g., temperature and voltage
�uctuations) and is secure against malicious attacks [167].

Unfortunately, not all computing systems are provisioned
with dedicated TRNG hardware, limiting their ability to run
such applications e�ectively. In order to address this issue,

many works have attempted to provide true random number
generators purely using commodity hardware components
that can be found in most systems today (e.g., DRAM [15, 81,
88, 126, 150] and SRAM [67, 68, 158]).

Using DRAM as the entropy source for generating true ran-
dom numbers (i.e., DRAM-based TRNG) is a promising ap-
proach to providing a TRNG to a variety of computing systems
ranging from high-performance servers, low-power edge de-
vices, and systems that employ processing-in-memory [157]
due to the widespread adoption of DRAM as main memory
across these systems. However, prior proposals for DRAM-
based TRNGs (i) have high latencies in generating random
numbers because they rely on fundamentally slow processes
(e.g., retention failures [63, 81, 149, 153], DRAM start-up val-
ues [47]) or (ii) generate random numbers at low throughput be-
cause they either use small portions of selected DRAM rows as
an entropy source (e.g., tRCD failure-based [88]) or use whole
DRAM rows as an entropy source but fail to induce metasta-
bility in many sense ampli�ers (e.g., tRP failure-based [15]).

Our goal in this work is to develop a TRNG that uses com-
modity DRAM devices to generate random numbers with both
high throughput and low latency. To achieve this, we leverage
the novel observation that a carefully-engineered sequence
of DRAM commands (described in Section 4) activates four
DRAM rows in quick succession in commodity DRAM chips
from one major DRAM manufacturer (SK Hynix), a process
we refer to as QUadruple ACtivation (QUAC).

Our key idea is to leverage QUAC as a substrate for low-
latency and high-throughput DRAM-based TRNGs. When
activating rows that are initialized with con�icting data (e.g.,
data ‘0’ in two rows and data ‘1’ in the other two), bitline sense
ampli�ers non-deterministically converge to random values
based on their individual circuit characteristics resulting from
manufacturing process variation. Using QUAC operations to
induce metastability in many DRAM sense ampli�ers in paral-
lel enables high-throughput and low-latency random number
generation.

To this end, we develop QUAC-TRNG, a DRAM-based TRNG
that repeatedly performs QUAC operations in DRAM and pro-
cesses the results of these operations using a cryptographic
hash function [50] to generate random numbers with high
throughput. One QUAC-TRNG iteration consists of �ve key
steps: QUAC-TRNG (i) identi�es four consecutive DRAM rows,
(ii) initializes the rows with con�icting data patterns (e.g., data
‘0’ in two rows and data ‘1’ in the other two), (iii) performs a
QUAC operation on the rows by issuing a sequence of DRAM
commands, (iv) reads the result of the operation from the sense
ampli�ers, and (v) performs the SHA-256 cryptographic hash
function [50] to post-process the result and output random
numbers. Our experimental evaluation using 136 real DDR4
DRAM chips from 17 real DDR4 modules (Section 6) shows
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that QUAC-TRNG generates an average of 7664 bits of random
data per iteration and each iteration takes 1940 ns.

Compared to previously-proposed DRAM-based TRNGs [15,
47, 74, 81, 88, 126, 150], QUAC-TRNG enables (i) lower latency
because it only requires simultaneous activation of consecutive
rows, which can be performed quickly using DRAM commands,
and (ii) higher throughput because it uses QUAC operations
to induce metastability in many sense ampli�ers in parallel.

We evaluate QUAC-TRNG’s quality by showing that random
bitstreams generated using real DRAM chips pass the NIST
statistical test suite [20] (Section 7.1). We then quantitatively
evaluate QUAC-TRNG’s performance against two state-of-the-
art DRAM-based TRNG proposals [15, 88] (Section 7.4). For
each prior proposal, we consider two con�gurations: (i) an
unmodi�ed base version as proposed in the original paper and
(ii) an enhanced version that we believe represents a more fair
comparison against our work. The enhanced versions incor-
porate optimizations to improve throughput and employ the
SHA-256 hash function for post-processing. Our results show
that QUAC-TRNG’s throughput is 15.08× and 1.41× that of the
best prior DRAM-based TRNG for the basic and enhanced con-
�gurations, respectively. We show that QUAC-TRNG scales
quasi-linearly with available DRAM bandwidth, outperforming
the enhanced con�guration of the best prior DRAM TRNG by
up to 2.03x at future DRAM transfer rates. We also study and
demonstrate how QUAC-TRNG can be integrated into a real
system (Section 9) with minor performance, memory capacity,
and CPU die area costs.

We make the following key contributions:
• We make the novel observation that a carefully engineered

sequence of DRAM commands can activate four DRAM rows
in quick succession. We refer to this operation as QUadruple
ACtivation (QUAC). We show that QUAC operations can
induce metastability in DRAM bitline sense ampli�ers, which
we exploit to generate true random numbers.

• We introduce QUAC-TRNG, a new high-throughput TRNG
based on QUAC operations that is suitable for commodity
DRAM chips. QUAC-TRNG combines the bene�ts of two
components to generate high-quality true random numbers
with high throughput: (i) massive parallelism in true ran-
dom number generation available in DRAM sense ampli-
�ers and (ii) randomness quality improvements provided by
the SHA-256 hash function to generate random numbers at
signi�cantly higher throughput than previously-proposed
DRAM-based TRNGs.

• We experimentally demonstrate that QUAC-TRNG is a high-
quality TRNG by showing that the random bitstreams QUAC-
TRNG generates pass all the standard NIST statistical test
suite randomness tests [20].

• We show that QUAC-TRNG improves throughput over state-
of-the-art DRAM-based TRNG proposals [15, 88], achieving
15.08× and 1.41× the throughput of basic and throughput-
optimized baselines, respectively.

• We present a detailed experimental characterization study
of the randomness provided by QUAC operations using 136
real DDR4 chips (from 17 DDR4 modules). We show that
(i) QUAC-TRNG is suitable for implementation in commod-
ity DRAM chips, and (ii) the randomness provided by QUAC
operations remains stable over time.

2. Background
2.1. DRAM Structure and Organization

DRAM-based main memory is organized hierarchically. A
processor is connected to one or many memory channels. Each
channel has its own command, address, and data buses. Mul-
tiple memory modules can be plugged into a single channel.
Each module contains several DRAM chips, which are grouped
into ranks. Each rank contains multiple banks that are striped
across the chips that form the rank but operate independently.
Particular standards cluster multiple banks in bank groups [76,
77]. Data transfers between DRAM memory modules and pro-
cessors occur at a cache block granularity.
DRAM Bank Organization. A DRAM bank is divided into
multiple subarrays [33, 93, 140]. Each subarray comprises mul-
tiple wordline drivers and sense ampli�ers (SAs), as shown in
Figure 1-Ê. Subarrays are further divided into DRAM MATs.
Figure 1-Ë shows a DRAM MAT. DRAM MATs are separated
from each other by wordline (WL) drivers that are activated to
drive a DRAM wordline within the DRAM MAT. In a DRAM
MAT, DRAM cells are organized into a two-dimensional struc-
ture over bitlines and wordlines. The set of cells over the same
wordline forms a DRAM row, as depicted in Figure 1-Ì.
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Figure 1: DRAM subarray, MAT, row and cell organization
Accessing DRAM. A DRAM cell (Figure 1-Í) stores data as a
voltage level between the supply voltage (VDD) and ground in
its capacitor. Each cell is connected to a bitline via an access
transistor. When all rows are closed, bitlines are precharged to
the half of supply voltage (VDD/2). Accessing a cell requires
activating the corresponding row by issuing an (ACT ) com-
mand. The activation process starts with enabling a wordline,
which enables all access transistors in the row. As the access
transistors are turned on, each cell shares its charge with the
corresponding bitline, causing deviation on the bitline voltage
either towards VDD or ground. Each SA ampli�es a bitline’s
voltage to either VDD or 0 as the deviation in bitline voltage
exceeds a threshold voltage (Vth). Read and write operations
can be issued to SAs only after the row activation is completed.
A precharge (PRE) command is used to close a row and set the
bitline voltage to VDD/2.
DRAM Timing Parameters. A memory controller must
obey the DRAM timing parameters de�ned in standards set by
JEDEC (e.g., DDR4 [76]) while scheduling DRAM commands.
Figure 2 presents a timeline of DRAM commands on the com-
mand bus. Consecutive ACT and PRE commands on the com-
mand bus must be interleaved by at least tRAS (i.e., ACT→
PRE timing parameter) (Ê). This is because a row needs to be ac-
tive for at least as long as tRAS to allow its cells to fully restore
their charge. The time window between a PRE and an ACT
command on the command bus must be at least tRP (Ë). This
is required to settle the bitline voltage to VDD/2 and to disable
the activated wordline. Back-to-back ACT commands to dif-
ferent bank groups and to di�erent DRAM banks (in the same
bank group) must be interleaved with latencies of tRRD_S (Ì)
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and tRRD_L (Í), respectively. tRRD_S and tRRD_L are usually
small (3.00, 4.90 ns in DDR4-2666 [76]). This enables overlap-
ping the activation latency of DRAM rows in di�erent banks
or bank groups.
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RD PRE ACT
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Figure 2: Timeline of key DDR4 commands.
DRAM manufacturers set large guardbands around DRAM

timing parameters to guarantee correct operation [32, 35, 90,
101, 102]. A large body of work characterizes DRAM behav-
ior under non-standard DRAM timing parameters to demon-
strate that violating DRAM timing parameters allows improv-
ing DRAM access latency [30–32, 35, 45, 86, 90, 99, 101, 102],
generating random numbers [15, 86, 88], implementing physi-
cal unclonable functions (PUFs) [15, 86, 87], and copying data
and performing bitwise AND/OR in DRAM [53] on commodity
DRAM devices.
2.2. True Random Number Generators

True random number generators (TRNGs) [96] harness en-
tropy from random physical phenomena to generate random
numbers. These entropy sources are often biased [96, 146], so
practical TRNG designs often use post-processing methods to
remove bias in their entropy sources, i.e., to strengthen the qual-
ity of the random numbers they produce (e.g., hashing [129]
and other whitening algorithms [78, 161]). Post-processing
can constrain TRNG throughput and latency, potentially re-
quiring additional resources (e.g., output bu�ering) to o�set
its impact.
3. Motivation and Goal

High-quality random numbers are crucial to many technolo-
gies and applications [27, 37, 40, 42, 46, 61, 73, 85, 97, 108, 109,
112, 127, 132, 146, 161, 166, 169, 170]. In particular, random
numbers are used widely in cryptographic communication
protocols (e.g., key generation to initialize communication, sig-
nature and �ngerprint generation to authenticate remote par-
ties) to form secure channels between computing systems and
networked devices. These protocols require an unpredictable,
high-quality stream of true random numbers to remain secure
against cryptographic attacks [37, 160] that aim to breach
highly valuable, con�dential user data. Some emerging key
distribution protocols (e.g., quantum key distribution) provide
even stronger security guarantees that make them resilient
against a more diverse set of attacks [40, 108]. These protocols
require TRNG throughputs on the order of several Gb/s [165].
Other than cryptography, high-throughput TRNGs are useful
for other applications such as scienti�c simulations [27, 42,
73, 109], machine learning [112, 132, 166, 169], and gaming
applications [146].
High-throughput TRNGs. Many prior works develop and
demonstrate high-throughput TRNGs that use specialized hard-
ware (e.g., optics [56, 104, 145, 156], ring oscillators [9, 29, 163,
167], chaotic circuits [43, 121]) to generate random numbers.
Unfortunately, these proposals typically either (i) need to be in-

tegrated at design time, rendering them unsuitable for existing
systems or (ii) are costly, limiting their potential for widespread
adoption. To overcome these limitations and enable the afore-
mentioned applications across computing systems ranging
from high-performance servers to low-power edge devices, it
is important to enable high-quality random number generation
using existing commodity hardware.
DRAM-based TRNGs. DRAM is a promising substrate for
true random number generation because DRAM chips are
ubiquitous throughout contemporary computing platforms.
DRAM-based TRNGs can be integrated into commodity sys-
tems at low cost with minimal e�ort [88], thereby enabling
high-throughput random number generation across a broad
spectrum of both (i) existing and (ii) future computing systems.
SynergyWith PIM. Processing-in-memory (PIM) systems im-
prove system performance and/or energy consumption by per-
forming computations directly within a memory chip, thereby
avoiding unnecessary data movement [25, 26, 57, 58, 60, 116,
118, 137, 139]. Prior works propose a broad range of PIM sys-
tems [5–8, 13, 22–24, 34, 38, 44, 48, 49, 54, 55, 58, 59, 65, 66,
71, 72, 89, 98, 100, 103, 107, 113, 115, 119, 120, 124, 133–135,
137–139, 142, 148, 164, 168] in the context of various workloads
and memory devices. Enabling new PIM workloads (e.g., secu-
rity applications) that rely on high-quality random numbers
requires allowing the PIM system to perform TRNG operations
directly within the memory to both (1) avoid ine�cient o�-
chip communication to other possible TRNG sources, and (2)
to enhance the overall security and privacy of PIM systems.
Shortcomings of Prior Work. Prior proposals for DRAM-
based TRNGs either (i) have high latencies in generating ran-
dom numbers because they rely on fundamentally slow pro-
cesses (e.g., retention failures [63, 81, 149, 153], DRAM start-up
values [47]) or (ii) generate random numbers at low throughput
because they either use small portions of selected DRAM rows
as entropy source (e.g., tRCD failure-based [88]) or use whole
DRAM rows as entropy source but fail to induce metastability
on many sense ampli�ers (e.g., tRP failure-based [15]).

TRNGs based on DRAM start-up values [47] require a power
cycle to generate random bits. This mechanism is impractical
for a high-throughput TRNG because it both (i) incurs very
high random number generation latency and (ii) precludes gen-
erating random bits in a streaming manner. TRNGs based on
DRAM retention failures [81, 150] need to accumulate DRAM
retention failures over long periods of time to harness enough
entropy to generate random numbers. DRAM cells �ip very
infrequently due to retention failures as many DRAM cells
retain data for hours [82, 106, 123, 128, 159]. The throughput
of activation latency-based TRNGs [15, 88] is constrained by
the amount of entropy they can harness from small portions
of selected DRAM rows, a DRAM cache block. For example, D-
RaNGe [88] can only use up to 4 out of the 64K bits available for
random number generation. Precharge latency-based TRNGs
induce bit-�ips on many DRAM cells in parallel on DRAM row
granularity. However, the proportion of randomly-failing cells
among all cells in a DRAM row following precharge latency
failures is very low.1

We posit from our analysis of prior work that a high-
throughput DRAM-based TRNG needs to (i) exploit DRAM
failure mechanisms that are inherently fast and random (e.g.,

1Section 7.4 provides a rigorous analysis of prior DRAM-based TRNGs
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timing failures), (ii) harness entropy from large portions of
selected DRAM rows, and (iii) induce random behavior on a
large proportion of sense ampli�ers.
Our goal is to develop a new TRNG mechanism that uses

commodity DRAM devices to robustly generate high-quality
random numbers with higher throughput and low latency.
4. Quadruple Activation

We observe a new phenomenon, which we call quadruple
activation (QUAC), in commodity DRAM modules. We �nd
that by issuing a sequence of three standard DDR4 commands
(ACT→ PRE→ ACT) with reduced timings (e.g., 2.5 ns), four
consecutive DRAM rows in the same subarray are activated
simultaneously. We identify the following two characteristics
of QUAC. First, QUAC can simultaneously activate a set of four
DRAM rows whose row addresses di�er only in their two least
signi�cant bits (e.g., rows {0,1,2,3}). We refer to each such set
of four DRAM rows as a DRAM segment. Second, we observe
QUAC only when the twoACT commands target row addresses
whose two least signi�cant bits are inverted. In other words,
the two ACT commands should target rows 0 and 3 (00 and
11 in base 2), or rows 1 and 2 (01 and 10 in base 2) within a
DRAM segment.

To explain the potential mechanism behind QUAC, we ex-
amine the array architecture in state-of-the-art high-density
DRAM chips. We hypothesize that the hierarchical design of
wordlines allows QUAC to simultaneously activate four rows in
a segment, and we present a hypothetical row decoder circuit
that explains why the row addresses of the two ACT com-
mands must have their two least signi�cant bits set to inverted
values.
4.1. Hierarchical Wordlines

High density and performance requirements have pushed
DRAM designers to architect high-density, low-latency DRAM
array architectures [114]. A commonly-used design pattern in
architecting such DRAM arrays is to hierarchically organize
DRAM wordlines to reduce latency and improve density [2, 36,
101, 155]. Figure 3 shows a DRAM MAT with the hierarchical
wordline design.
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In the hierarchical wordline design, a DRAM row address
is partitioned into two pieces. The higher-order bits of the
row address are used to select and activate a master wordline
(MWL). The MWL is connected to four local wordline (LWL)
drivers (D0, D1, D2, D3 in Figure 3) that are used to activate
four consecutive DRAM rows in a MAT. The least signi�cant
two bits of the row address are used to assert one of the four
LWL select lines (S0 to S3) to enable an LWL driver and �nally

activate a DRAM row.
An activated MWL potentially drives four consecutive LWLs

that form a segment. We hypothesize that the QUAC command
sequence (ACT-PRE-ACT) asserts S0 to S3 approximately at
the same time, resulting in simultaneous activation of four
consecutive DRAM rows.
4.2. Hypothetical Row Decoder

We present a hypothetical row decoder circuit design that
supports QUAC operations. The decoder design simultane-
ously activates four DRAM rows when the DRAM chip receives
a series of ACT-PRE-ACT commands with violated timing pa-
rameters. Figure 4 illustrates our row decoder circuit, which
operates on the least signi�cant two bits of row addresses.
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Figure 4: Hypothetical row decoder circuit that enables QUAC.
The red and black colors represent asserted and de-asserted
signals, respectively.

The �rst ACT command (Figure 4, left) targeting Row 0 (R0,
Addr[1:0] = “00”) sets the latches (L) that drive the signals A0b
and A1b. These signals are combined through a logical-AND
operation to form S0, which enables the LWL driver that ac-
tivates R0. The following PRE command cannot deactivate
R0 nor reset the latches that drive A0b and A1b, as the tRAS

parameter is violated. The second ACT command (Figure 4,
right) targeting Row 3 (R3, Addr[1:0] = “11”) sets the latches
that drive the signals A0 and A1. After the second ACT com-
mand, all four control signals (i.e., A0, A0b, A1, and A1b) are
enabled since the previous PRE command fails to reset the
latches. Together, these signals assert S1, S2, and S3, enabling
the LWLs that activate R1, R2, and R3, respectively. Since R0
is still activated, this results in simultaneous activation of all
four rows in a DRAM segment.

We con�rm that QUAC activates four DRAM rows through
an experiment with real DRAM chips. We �rst initialize a
DRAM segment with a prede�ned data pattern. We then per-
form a QUAC operation on the DRAM segment to simultane-
ously activate four rows. Next, we write a new data pattern
to the sense ampli�ers while all four rows are active. Finally,
we precharge the bank and individually read each row while
obeying manufacturer-recommended DRAM timing parame-
ters. We observe that all four rows are updated with the new
data pattern we write. We observe valid QUAC operations in
136 DDR4 chips from one major DRAM manufacturer.
4.3. Future QUAC Interfaces

Even though current DDRX interfaces do not support QUAC,
future DRAM chips can be built (and their interface accordingly
speci�ed) to take advantage of the same fundamental QUAC
behavior to enable low-cost, high-throughput true random
number generation (which we describe next in Section 5) as
intended behavior.
5. QUAC-TRNG

QUAC-TRNG generates true random numbers at high-
throughput by repeatedly performing QUAC.
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5.1. Generating Random Output From QUAC

Figure 5 depicts how a QUAC operation generates a random
output when the cells in rows R0 and R2 are initially charged
(VDD), and the cells in rows R1 and R3 are initially discharged
(0) in a DRAM segment.

R3

R2

R1

R0

0

VDD

2
VDD

2
VDD

2
VDD

2
VDD

Command:
Ti me: T0 T1 T2 T3 T4

ACT R0 PRE ACT R3

VDD

+ ? ~

Figure 5: Timeline of changes in a DRAM bitline’s state in a
DRAM segment during a QUAC operation. Dashed vertical
lines represent a state transition.

At T0, the bitline is precharged (VDD/2). At T1, we enable
wordline R0 by quickly issuing an ACT command to R0. We
interrupt the ACT command by issuing a PRE command at T2.
Meanwhile, the cell on R0 shares a portion of its charge with
the bitline, reducing its voltage level (< VDD). Before the PRE
command closes the row and precharges the bitline, we issue
another ACT command to R3 at T3. The last ACT command
interrupts the PRE command and enables wordlines R1, R2,
and R3 simultaneously, in addition to the already enabled R0.
Since QUAC opens four rows, all four cells on a DRAM bitline
contribute to the bitline voltage. Following QUAC, at T4, the
bitline ends up with a voltage level below reliable sensing
margins. Thus, it is sampled as a random value by the sense
ampli�er; in Figure 5, the single depicted bitline is randomly
sampled as VDD .

To explain QUAC’s true random number generation behav-
ior, we hypothesize that QUAC produces random values in
sense ampli�ers by forcing each sense ampli�er to attempt
to amplify a di�erential voltage that is well below its reliable
sensing margin (i.e., there is approximately no voltage dif-
ference between the sense ampli�er’s two terminals). Under
these conditions, the sense ampli�er fails to reliably develop
and non-deterministically settles to either logical high or low
based on thermal noise [21].2 To achieve this, we initialize
the four rows that will undergo QUAC with data patterns that
ensure opposite charge values in DRAM cells along the same
bitline. When charge sharing occurs amongst the four cells
following a QUAC operation, the bitline remains close to the
quiescent bitline voltage of VDD/2. Therefore, any data pat-
tern that programs the four cells with con�icting charge values
will su�ce.3

2We do not observe this behavior in every DRAM bitline within a DRAM
segment. We attribute this to the e�ects of process variation across di�erent
components in the DRAM array, e.g., the capacitance of DRAM bitlines, the
o�set of di�erential sense ampli�ers and the capacitance of DRAM cells.

3To analyze QUAC’s data pattern dependency, we exhaustively test QUAC
with 16 data patterns, as we describe in Section 6.1.

5.2. Mechanism
QUAC-TRNG leverages the random values in the sense am-

pli�ers generated by QUAC operations as its source of en-
tropy. QUAC-TRNG �rst performs a QUAC operation on a
high-entropy DRAM segment4 and generates random values
in the sense ampli�ers. QUAC-TRNG then uses the SHA-256
cryptographic hash [50] function to post-process the random
values in the sense ampli�ers to generate high-quality true
random numbers.

Figure 6 depicts a DRAM subarray’s logical organization
when used for QUAC-TRNG and the three-step procedure
of generating a 256-bit random number with QUAC-TRNG.
QUAC-TRNG reserves six rows in a DRAM subarray to ensure
that no other system component can access the reserved rows.
Four of these rows form a segment that is used to perform
QUAC. Two of them store all-0s and all-1s for initializing the
segment with low latency.
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DRAM Segment
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Row 2
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All ‘0’ Row
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③ Read Random Data

Memory Controller
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256-Bit Entropy Blocks
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④ Post Processing 

SHA-256
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Figure 6: QUAC-TRNG mechanism.
To generate a 256-bit random number, QUAC-TRNG �rst

selects a high-entropy DRAM segment and initializes the seg-
ment by performing four in-DRAM copy operations [53, 135]
from the two reserved rows to each row in the segment 1 . Sec-
ond 2 , it performs a QUAC operation on the segment to gener-
ate random data in the sense ampli�ers. Third 3 , the memory
controller reads a block of bits from the sense ampli�ers with
a total amount of 256 bits of Shannon entropy (Section 6.1.1).
Finally 4 , the memory controller post-processes this block
using the SHA-256 hash function to generate a 256-bit random
number with improved quality of randomness.
6. Real DRAM Chip Characterization
6.1. Randomness in QUAC Operations

We experimentally study the entropy characteristics of
QUAC operations across di�erent data patterns and DRAM
segments in real DRAM chips.
6.1.1. Experimental Methodology.To characterize the en-
tropy in random values resulting from QUAC operations, we
conduct experiments on 136 DRAM chips that come from 17
o�-the-shelf DDR4 modules (see Appendix A, Table 3).
Infrastructure. We use a modi�ed version of SoftMC [64]
that enables precise control over DDR4 command timings,
also used in [52, 91]. We test DDR4 modules (Figure 7-a) by
issuing DDR4 command sequences that we send to the FPGA

4A high-entropy segment is a DRAM segment where QUAC operations
generate many random values (i.e., with 1000s of bits of entropy) in the sense
ampli�ers, identi�ed through a one-time characterization e�ort, as described
in Section 6.1.2.

5



board (Figure 7-b) from the host machine through the PCIe
interface (Figure 7-c). During our experiments, we control the
temperature of DRAM chips on both sides of the module. To
do so, we vertically connect the module to the FPGA board and
heat the module as needed from both sides using rubber heaters
(Figure 7-a). To control the heaters, we use a temperature
controller (Figure 7-d) that performs a closed-loop PID control,
which keeps the temperature constant at±0.1 °C of the desired
temperature level (50 °C by default).

b. FPGA Board

a. DRAM Module

d. Temperature Controller
c. PCIe Host Interface

Figure 7: DDR4 SoftMC experimental setup.

Algorithm 1 describes the test procedure we use to extract
true random numbers using QUAC operations. Algorithm 1
consists of three steps: step (i) initializes the DRAM segment
with a data pattern (Line 2), step (ii) performs a QUAC oper-
ation on the DRAM segment (Lines 3-7 ), and step (iii) reads
back the random values in the row bu�er (Lines 9-10). To si-
multaneously enable all four rows in a segment, we activate
the �rst and the fourth rows in the segment (e.g., Row0 and
Row3) with two greatly violated timing parameters, tRAS , and
tRP . First, we issue the PRE command (Line 5) earlier than the
time delay (tRAS) needed for charge restoration to complete.
Second, we issue the second activation (Line 7 ) earlier than
the time delay (tRP ), needed for bitlines to settle at Vdd/2. We
obey the DRAM timing parameters while reading from every
sense ampli�er in the DRAM segment.5

Algorithm 1: Testing for QUAC’s randomness
1 DRAM_QUAC_randomness_testing(data_pattern,

DRAM_segment,DRAM_bank):
2 write data_pattern into all rows in DRAM_segment
3 activate(DRAM_segment : Row_0)
4 wait(2.5ns) // violate tRAS

5 precharge(DRAM_bank)
6 wait(2.5ns) // violate tRP

7 activate(DRAM_segment : Row_3)
8 wait(tRCD)
9 foreach SA in DRAM_segment: // read each sense ampli�er

10 record the value on the SA

Shannon Entropy. Shannon entropy [141] quanti�es the
amount of information present in a signal. We use Shannon
entropy as a measure of the randomness in DRAM sense am-
pli�ers following QUAC operations. We calculate a sense am-
pli�er’s Shannon entropy as in Equation 1, where p(x1) is
the probability of observing a logical-0 value and p(x2) is the
probability of observing a logical-1 value in the sense ampli-
�er following QUAC operations. The total Shannon entropy
(i.e., entropy) of a bitstream can be interpreted as the e�ective
number of random bits within the bitstream.

H(x) = −
2∑

i=1
p(xi) log2 p(xi) (1)

5We repeat Algorithm 1 for every DRAM segment in a DRAM bank in all
DRAM modules.

6.1.2. Methodology to Measure Entropy in QUAC Op-
erations.We measure the entropy of the random bitstreams
generated in individual sense ampli�ers by performing QUAC
operations. We repeatedly perform QUAC (as shown in Algo-
rithm 1) 1000 times and measure the entropy of each sense-
ampli�er by evaluating Equation 1 for the 1000-bit bitstream
produced by each sense ampli�er. We repeat this analysis on
8K di�erent DRAM segments (32K DRAM rows) using 16 dif-
ferent data patterns. We refer to the entropy of the bitstreams
obtained from a sense ampli�er connected to a bitline in a
DRAM segment as that bitline’s entropy.
6.1.3. Data Pattern Dependence.We analyze how the data
patterns used in initializing DRAM segments a�ect the result
of QUAC operations. We calculate the entropy for each cache
block (i.e., 512 bitlines) in a DRAM module by aggregating
the entropy of all bitlines in the cache block. We de�ne two
metrics (i) average cache block entropy, and (ii) maximum cache
block entropy.6 We calculate the average cache block entropy as
the average entropy across all cache blocks in a DRAM module.
The maximum cache block entropy is the entropy of the cache
block with the highest entropy in a DRAM module. Figure 8
shows the average values of each of these metrics across all
17 modules we test. The error bars show the range (i.e., mini-
mum and maximum) of the values across all modules. A larger
entropy indicates more random behavior in DRAM sense am-
pli�ers. We omit the data patterns that result in insu�cient
entropy in sense ampli�ers following QUAC operations.
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Figure 8: Average (grey bars, left Y-axis) and maximum (orange
bars, right Y-axis) DRAM cache block entropies for di�erent
data patterns across 17 modules. The error bars show the range
of the average and the maximum DRAM cache block entropy
across all modules.

We make three observations from Figure 8. First, the aver-
age entropy varies across di�erent data patterns. The average
cache block entropy is the highest at 11.07 bits for the data pat-
tern “0111” whereas it is the lowest at 0.17 bits for data pattern
“1011”. Second, we observe that the “0111” and “1000” data
patterns lead to the highest entropy on average in all DRAM
modules we test. This indicates that randomness increases
when the �rst row QUAC activates (Row0) is initialized with
the inverted value of all other three rows (e.g., all-zeros in
Row0 and all-ones in the other three rows). This is because
the cells in the �rst row have more time to share their charge
with the bitlines as they are activated earlier than the other
three rows. We hypothesize the bitline voltage is more likely
to end up at a metastable level if all three later-activated rows
simultaneously try to pull the bitline voltage in the opposite
direction of the row that is activated �rst in QUAC operations.
Third, we observe that cache block entropy in QUAC opera-

6The theoretical maximum entropy for a single cache block is 512 bits
because each cache block is 512 bits (i.e., 64 bytes) wide.
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tions can reach up to 53.0 bits with the “0100” data pattern.
We hypothesize that this is a result of a combination of design-
induced variation [101] and manufacturing process variation
across DRAM segments. For example, variation in DRAM cell
capacitance across DRAM segments may result in some DRAM
segments to favor a certain data pattern (e.g., “0100”), i.e., per-
forming QUAC on this segment keeps the bitline voltage below
reliable sensing thresholds when the rows are initialized with
that data pattern.
6.1.4. Spatial Distribution of Entropy.We study the spatial
distribution of entropy in QUAC operations across segments in
a DRAM bank. We calculate a segment’s entropy as the sum of
all bitline entropies in a DRAM segment. Figure 9 depicts how
a segment’s entropy (y-axis) varies across 8K DRAM segments
in a DRAM bank (x-axis) across 136 DRAM chips, initialized
with the data pattern that yields the largest average entropy
(“0111”). There are three curves in Figure 9. The red curve
shows the average segment entropy across all chips, with the
error bars showing the maximum and minimum entropy values
observed for any DRAM segment.7 Black (dotted) and blue
(dashed) curves provide representative samples of two main
entropy variation trends (M1 and M2, respectively, depicting
two selected DRAM modules) we observe across all chips.

Figure 9: Average DRAM segment entropy across 17 modules
(136 chips). The X-axis plots the DRAM segments and the Y-
axis shows the segment entropy. We plot the segment entropy
of two speci�c modules (M1 & M2) using black (dotted) and
blue (dashed) lines.

We make three observations from Figure 9. First, the DRAM
segment entropy behavior is di�erent across modules. For
example, the 640th segment (middle of the highlighted area on
the �gure) exhibits signi�cantly lower entropy compared to
nearby segments (i.e., leads to a local minimum) in module
M1, but it exhibits a signi�cantly higher entropy compared to
its neighboring segments (i.e., leads to a local maximum) in
module M2. Assuming the two modules’ circuit designs are
identical (since both modules are from the same manufacturer),
we can potentially attribute this di�erence between modules to
systematic process variation [111] and/or post-manufacturing
row repair, where erroneous DRAM rows are remapped on a
per-chip basis after manufacturing to improve yield [19, 41, 70,
75, 79, 80, 83, 84, 92, 101, 105, 122, 138, 144, 152]. Second, we
observe that the overall segment entropy distribution follows
a wave-like pattern. The segment entropy peaks and descends
repeatedly as segment id (x-axis) increases (i.e., as DRAM row
addresses increase) in the same DRAM bank. We hypothesize
that this spatial pattern results from either the e�ects of sys-
tematic process variation or the structure of the local DRAM

7The theoretical maximum entropy of a single segment is 64K bits because
there are 64K bitlines in each DRAM segment.

array. For example, a segment’s entropy could be related to
the segment’s distance from the sense ampli�ers. Third, a ma-
jority of modules experience a signi�cant increase in segment
entropy towards the 8000th segment, followed by a drop in
segment entropy towards the end (i.e., 8192nd segment) of the
DRAM bank. This could potentially be explained by systematic
process variation or the micro-architectural characteristics of
the DRAM bank. For example, the subarrays at the end of the
bank might be di�erently sized than the rest of the subarrays,
placing some segments further away from the sense ampli�ers.

We calculate a cache block’s entropy (cache block entropy)
as the sum of the entropy of all bitlines in that cache block.
We use the highest average-entropy data pattern (“0111”) to
initialize DRAM segments and �nd each cache block’s entropy
in the highest-entropy DRAM segment in each DRAM module.
Figure 10 plots the average value of each cache block’s entropy
in the highest-entropy DRAM segment, and the error bars
show the range (i.e., minimum and maximum) of the values
across all 17 modules. We observe that the cache block entropy
peaks around the middle of the DRAM segment and deterio-
rates towards the end of the DRAM segment. This indicates
that the bitlines in the higher-numbered cache blocks are less
random than the bitlines in the lower- or middle-numbered
cache blocks.

Figure 10: Average entropy of each cache block in the highest-
entropy segment in all modules. The error bars show the range
of the values across all modules.

We conclude from our analysis that the entropy provided by
QUAC operations is distributed non-uniformly across DRAM
segments and DRAM cache blocks. We hypothesize that the
entropy distribution could be related to the micro-architectural
characteristics of DRAM banks (e.g., distance of segments from
the sense ampli�ers), systematic variation in manufacturing
processes [111], or post-manufacturing row-repair.
6.2. True Random Bitlines in QUAC Operations

We conduct a SoftMC experiment to demonstrate that QUAC
operations, when performed repeatedly, generate random bit-
streams in DRAM sense ampli�ers. The SoftMC experiment
works in three steps: (i) initializes the DRAM segment with a
data pattern, (ii) performs a QUAC operation on the DRAM
segment to generate random values in the sense ampli�ers,
(iii) reads out the DRAM segment. We collect one bit from
each sense ampli�er in the DRAM segment with each iteration
of our experiment. We iterate one million times to collect 1 Mb
bitstreams from every sense ampli�er in the DRAM segment.
Our entropy analysis shows that the values produced by QUAC
operations on all sense ampli�ers are biased towards a binary
(logic-0 or logic-1) value (i.e., more likely to produce either one
of the binary values). We use post-processing methods (Von
Neumann Corrector [162] and SHA-256 [50]) to improve the
quality of random bitstreams generated by QUAC operations.
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We apply the Von Neumann Corrector (VNC) [162] to all
bitstreams to remove bias and improve the quality of the ran-
dom number sequence. The VNC �rst splits all bits into groups
of two bits. Then it applies one of the three transformations:
(i) removes the group if both of the bits have the same value,
(ii) removes the group and inserts a logic-1 if the �rst bit in the
group is logic-0 and the second one is logic-1 (i.e., the generator
transitions from logic-0 to logic-1), or (iii) removes the group
and inserts a logic-0 otherwise. E.g., the bitstream “0010” after
post-processing using the VNC becomes “0”.

We use the NIST Statistical Test Suite (STS) [20] to validate
the randomness of the output of our TRNG. NIST STS formu-
lates several statistical tests to test a speci�c null hypothesis, H0,
which states that the number sequence under test is random.
The suite outputs a p-value for all of the statistical tests that it
runs on the random number sequence. We say that H0 holds
for a statistical test if it outputs a p-value greater than a chosen
level of signi�cance denoted as α. That is, if the p-value of a
test is greater than α, then the number sequence is random
according to that test. We choose α as 0.001 based on the sug-
gested level of signi�cance range ([0.01, 0.001]) in the NIST STS
speci�cation [20].

We collect bitstreams from every sense ampli�er (64K in
one DRAM segment) in a DRAM segment following QUAC
operations. We test 8K DRAM segments in every DRAM mod-
ule. We observe that 1 Mbit bitstreams collected from 22 sense
ampli�ers can pass all NIST STS tests.

Table 1 presents the average p-values for the NIST STS test
results on two types of bitstreams that pass all 15 tests: (i) the
output of the Von Neumann Corrector (“VNC”) and (ii) the
output of the post-processing step we describe in Section 5.2
(“SHA-256”). We conclude that QUAC generates number se-
quences that are indistinguishable from true random number
sequences. We discuss the randomness of post-processed re-
sults (SHA-256 column) in Section 7.1.

Table 1: NIST STS Randomness Test Results
NIST STS Test VNC∗ SHA-256

(p-value) (p-value)
monobit 0.430 0.500
frequency_within_block 0.408 0.528
runs 0.335 0.558
longest_run_ones_in_a_block 0.564 0.533
binary_matrix_rank 0.554 0.548
dft 0.538 0.364
non_overlapping_template_matching >0.999 0.488
overlapping_template_matching 0.513 0.410
maurers_universal 0.493 0.387
linear_complexity 0.483 0.559
serial 0.355 0.510
approximate_entropy 0.448 0.539
cumulative_sums 0.356 0.381
random_excursion 0.164 0.466
random_excursion_variant 0.116 0.510

∗VNC: Von Neumann Corrector

7. QUAC-TRNG Evaluation
We evaluate QUAC-TRNG using real DRAM chip experi-

ments and simulation studies to show that QUAC-TRNG (i) pro-
duces high-quality random bitstreams, and (ii) outperforms
prior DRAM-based TRNG proposals.
7.1. QUAC-TRNG Output Quality

To demonstrate that QUAC-TRNG produces high-quality
bitstreams of random values, we experimentally extract nine

bitstreams from three DDR4 modules (24 DRAM chips).8 Our
results show that the bitstreams pass all of the NIST STS tests.

We extract a single bitstream using �ve steps: we (i) initial-
ize the DRAM segment with the highest-entropy data pattern
(“0111”), (ii) perform a QUAC operation on the DRAM seg-
ment, (iii) read out the DRAM segment, (iv) split the DRAM
segment into blocks that each have 256 bits of entropy based
on our characterization of cache block entropy in Section 6.1.2,
and (v) input the 256-bit entropy blocks to the SHA-256 hash
function to obtain 256-bit random numbers.

We partition 1 Gb bitstreams obtained from each highest-
entropy DRAM segment into 1 Mb random number sequences
and test 1024 number sequences per DRAM segment using
NIST STS. We �nd that 99.28% of the sequences pass all NIST
STS tests. This pass rate is larger than the acceptable rate9

(98.84%) that NIST speci�es [20].
Table 1, column “SHA-256” shows the average p-value for

each test. We conclude that QUAC-TRNG generates high-
quality uncorrelated, random bitstreams.
7.2. QUAC-TRNG Throughput

We analytically model QUAC-TRNG’s throughput for a mod-
ule in terms of (i) the number of input blocks with 256 bits of en-
tropy in the highest-entropy segment (SIB: SHA Input Blocks)
and (ii) the overall latency of one QUAC operation (L). QUAC-
TRNG generates 256× SIB random bits per DRAM bank in
L ns, resulting in a throughput of (256× SIB)/(L× 10−9)
bits per second. SIB is calculated directly from the entropy
of the highest-entropy segment as bsegment_entropy/256c.
We calculate L by tightly scheduling the DRAM commands
required to (i) initialize four DRAM rows with data patterns,
(ii) perform QUAC, and (iii) read random values from the sense
ampli�ers into the memory controller.

QUAC-TRNG’s latency (L) is dominated by the time it takes
to initialize four DRAM rows in a DRAM segment. We apply
two optimizations to amortize the initialization overhead and
increase the peak throughput of QUAC-TRNG. First, we con-
currently execute QUAC operations across multiple banks by
exploiting bank-level parallelism. In particular, for DDR4, we
interleave across bank groups due to DDR4’s short ACT-to-
ACT (tRRD_S) timing constraint. Second, we use in-DRAM
copy operations to initialize DRAM segments at row granular-
ity by adopting ComputeDRAM’s [53] RowClone-based [135]
in-DRAM copy procedure in our DDR4 modules. Using in-
DRAM copy, we signi�cantly reduce the DRAM segment ini-
tialization latency.

Figure 11 shows QUAC-TRNG’s random number throughput
under three con�gurations: (i) One Bank, where we use a sin-
gle DRAM bank to generate random numbers, (ii) BGP (Bank
Group Parallelism), where we use four banks from di�erent
bank groups and overlap DRAM command latencies to fully
utilize the available DRAM bandwidth, and (iii) RC (RowClone)
+ BGP, where we initialize DRAM segments using in-DRAM
copy to alleviate the overheads of segment initialization and
use four banks from di�erent bank groups. We plot the aver-

8We test a total of nine bitstreams, each sized 1 Gb, obtained from three
DRAM modules to demonstrate that QUAC-TRNG can produce statistically
uncorrelated streams of random numbers while maintaining a reasonable
testing time.

9Based on the formula (1−α)±3
√
α(1− α)/k, where k is the sequence

population (1024) and α is the signi�cance level (0.005)
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age, maximum, and minimum TRNG throughput QUAC-TRNG
provides across all DRAM modules.
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Figure 11: QUAC-TRNG’s random number generation through-
put (per DRAM channel) under three (One Bank, BGP, RC +
BGP) con�gurations.

We observe that, on average, One Bank achieves 0.49 Gb/s,
BGP achieves 0.75 Gb/s, and RC + BGP achieves 3.44 Gb/s
random number throughput. The TRNG throughput of QUAC-
TRNG varies across modules as the maximum segment entropy
for each module varies. We conclude that QUAC-TRNG greatly
bene�ts from in-DRAM copy to achieve high true random
number generation throughput.
7.3. System Performance Study

To understand the maximum throughput that QUAC-TRNG
can provide without reducing the total o�-chip memory band-
width available to concurrently-running applications, we run
an experiment using memory traces from the SPEC2006 bench-
mark suite. We simulate a 3.2 GHz core with four DRAM chan-
nels of DDR4 memory using Ramulator [4, 94] to calculate
the time each memory channel spends idle. We inject DDR4
commands that are issued in QUAC-TRNG iterations into these
idle intervals. Figure 12 shows the random number generation
throughput QUAC-TRNG provides while each SPEC2006 work-
load is running.10 QUAC-TRNG generates random numbers at
10.2 Gb/s on average with a minimum (maximum) throughput
of 3.22 Gb/s (14.3 Gb/s). We observe that by fully utilizing the
idle intervals in the memory channels, QUAC-TRNG achieves
on average, 74.13% of the empirical average throughput deter-
mined in Section 7.2 (i.e., 13.76 Gb/s for 4 DRAM channels).
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Figure 12: Available TRNG throughput during idle DRAM cy-
cles while running SPEC2006 workloads.

7.4. Comparison With Prior Work
We quantitatively compare high-throughput (> 100Mb/s)

DRAM-based TRNGs with QUAC-TRNG in this section. We
scale each prior work’s TRNG throughput and latency accord-
ing to the simulated system with 4 DRAM channels described
in Section 7.3. Table 2 presents a summary of our analysis,
including the low throughput (< 100Mb/s) TRNGs, which we
brie�y discuss in Section 10.

10We use four banks from di�erent bank groups in each channel.

Table 2: Summary of prior DRAM-TRNGs vs QUAC-TRNG
Proposal Entropy TRNG 256-bit TRNG

Source Throughput Latency

QUAC-TRNG Quadruple ACT 13.76 Gb/s 274 ns
Talukder+ [15] Precharge Failure 0.68 - 6.13 Gb/s 249 ns - 201 ns
D-RaNGe [88] Activation Failure 0.92 - 9.73 Gb/s 260 ns - 36 ns
D-PUF [150] Retention Failure 0.20 Mb/s 40 s
DRNG [47] DRAM Start-up N/A 700 µs
Keller+ [81] Retention Failure 0.025 Mb/s 40 s
Pyo+ [126] DRAM Cmd Schedule 2.17 Mb/s 112.5 µs

We rigorously compare QUAC-TRNG to two state-of-the-art
works that propose high-throughput DRAM-based TRNGs [15,
88]. We calculate both (i) the maximum random number gen-
eration throughput and (ii) the minimum latency for generat-
ing 256-bit random numbers for each of the high-throughput
TRNGs. To do so, we tightly schedule the sequence of DDR4
commands each TRNG needs to issue.
7.4.1. D-RaNGe [88].D-RaNGe generates random numbers
in DRAM by leveraging failures due to reading a cache block
before the row activation latency (tRCD) is satis�ed [88]. We
analyze the throughput of D-RaNGe under two con�gurations:
(i) D-RaNGe-Basic, where we evaluate D-RaNGe as proposed
in [88], and (ii) D-RaNGe-Enhanced, where we characterize the
entropy in tRCD failures in real DDR4 devices to estimate the
throughput of D-RaNGe combined with post-processing.
D-RaNGe-Basic. We calculate the throughput of D-RaNGe-
Basic by carefully scheduling the required DDR4 commands
to induce activation latency failures and read a cache block.
For our analysis, we augment D-RaNGe-Basic to exploit bank-
group-level parallelism in DDR4 devices. D-RaNGe observes
that there are as many as four TRNG cells per cache block.
We optimistically use the largest observed randomness (4 bits
in a cache block) in calculating D-RaNGe-Basic’s throughput.
We do not use in-DRAM copy operations to further improve
D-RaNGe-Basic’s throughput because D-RaNGe does not ben-
e�t from the highly parallel DRAM row initialization provided
by in-DRAM copy operations. D-RaNGe only needs to ini-
tialize one DRAM cache block, which can be done e�ciently
using DRAM write commands. Based on these observations
and assumptions, we estimate D-RaNGe-Basic’s maximum
throughput as 916.9 Mb/s and minimum latency for generating
256-bit random numbers as 260 ns.
D-RaNGe-Enhanced. To calculate D-RaNGe-Enhanced’s
TRNG throughput, we evaluate 136 real DDR4 chips from
17 DDR4 modules using SoftMC and �nd the average cache
block entropy provided by activation latency failures. For
each DRAM cache block in a DRAM bank, one iteration of
our SoftMC experiment: (i) initializes one DRAM row with
an all-0s data pattern (found to induce the most random be-
havior [88]) and (ii) accesses the DRAM row with reduced
tRCD . We repeat this experiment 1000 times and calculate
each cache block’s entropy. We �nd the maximum cache block
entropy for each DRAM module. We �nd the average of the
maximum cache block entropy across all DRAM modules to
calculate how many times D-RaNGe-Enhanced needs to access
DRAM with reduced tRCD to gather su�cient entropy (256-
bits). On average, D-RaNGe-Enhanced can harness 46.55 bits
of entropy from a DRAM cache block (out of 512 bits of theoret-
ical maximum entropy). We calculate that D-RaNGe-Enhanced
needs to perform 6 reduced tRCD accesses to generate a 256-
bit random number. For a fair comparison, we apply the same
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post-processing (SHA-256) to D-RaNGe’s output as we do in
QUAC-TRNG. D-RaNGe with post-processing achieves up to
9.73 Gb/s throughput. D-RaNGe-Enhanced’s latency of gener-
ating a 256-bit random number is 36 ns, including the latency of
the SHA-256 hash function. We conclude that post-processing
using SHA-256 can signi�cantly improve D-RaNGe’s TRNG
throughput as it enables utilizing a larger portion of the cache
block for random number generation.
7.4.2. Talukder+ [15].Talukder et al. propose generating
random numbers in DRAM by leveraging bit failures due
to activating a DRAM row before bitlines are precharged to
VDD/2 [15]. The authors use SHA-256 to post-process bit-
streams that are read from DRAM. Talukder+’s mechanism (i)
induces precharge latency failures on multiple DRAM rows,
(ii) accumulates the random failures in DRAM cells, (iii) reads
these DRAM cells, (iv) post-processes them using the SHA-256
hash function. We augment their algorithm to exploit bank-
group-level parallelism in DDR4 devices. We use in-DRAM
copy to initialize rows before inducing precharge latency fail-
ures. We analyze the throughput of Talukder+’s mechanism
under two con�gurations: (i) Talukder+-Basic, where we esti-
mate the throughput of the mechanism based on the authors’
analysis on random cells, (ii) Talukder+-Enhanced, where we
characterize the entropy provided by precharge latency failures
in real DDR4 devices to estimate the throughput.
Talukder+-Basic. We calculate Talukder+-Basic’s TRNG
throughput using the results provided by the authors. The
authors report that, on average, there are 130.6 random cells
in a DRAM row. To accumulate 256-bits of entropy in input
blocks of the SHA-256 hash function, Talukder+’s mechanism
needs to read 3 DRAM rows. Based on this, the throughput
of Talukder+’s mechanism is 681.2 Mb/s, and the latency of
generating a 256-bit random number is 249 ns.
Talukder+-Enhanced. To calculate Talukder+-Enhanced’s
TRNG throughput, we evaluate 136 real DDR4 chips from 17
DDR4 modules using SoftMC and �nd the average DRAM row
entropy (i.e., the sum of the entropy of all bitlines in a DRAM
row) in precharge latency failures. We �nd the maximum row
entropy for each DRAM module. We �nd the average of the
maximum row entropy across all DRAM modules to calculate
how many SHA-256 input blocks with su�cient entropy (256-
bits) that Talukder+-Enhanced can extract from a high-entropy
DRAM row. We �nd that, on average, Talukder+-Enhanced
can harness 1023.64 bits of entropy from a high-entropy DRAM
row (out of 64K bits of theoretical maximum entropy) following
reduced tRP accesses. On average, Talukder+-Enhanced can
extract 3 SHA-256 input blocks with su�cient entropy from a
DRAM row. We calculate Talukder+-Enhanced’s throughput as
6.13 Gb/s. The latency of generating a 256-bit random number
for the Talukder+-Enhanced is 201 ns.

Figure 13 plots the average throughput of Talukder+-
Basic/Enhanced, D-RaNGe-Basic/Enhanced, and QUAC-TRNG.
We project the throughput of the evaluated mechanisms to
various DDR4 data transfer rates (MT/s).

We make two observations. First, D-RaNGe cannot make
use of the additional DRAM bandwidth because D-RaNGe
needs to frequently induce activation latency failures to sus-
tain the high throughput of random numbers. Therefore, D-
RaNGe’s peak throughput is bound by DRAM access latency
and does not scale with increasing DRAM external bandwidth.
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Figure 13: Throughput of DRAM-based TRNGs projected on
DDR4 transfer rate. We plot transfer rates beyond the DDR4
standard [76].

Second, Talukder+ and QUAC-TRNG can scale with increas-
ing DRAM transfer rate as they are bound by the DRAM
bandwidth. QUAC-TRNG outperforms the basic (enhanced)
versions of Talukder+ and D-RaNGe by 20.20× (2.24×) and
15.08× (1.41×), respectively, at DDR4 2400 MT/s. At a future
12 GT/s transfer rate, QUAC-TRNG outperforms enhanced con-
�gurations of Talukder+ and D-RaNGe in TRNG throughput
by 2.03× and 3.99×, respectively.

Although QUAC-TRNG has a higher latency than Talukder+
and D-RaNGe, this latency for generating true random num-
bers can be hidden by accumulating random numbers in a
bu�er. Commodity systems that employ TRNGs already im-
plement bu�ers to store random numbers [10]. QUAC-TRNG
can �ll this bu�er at a signi�cantly higher rate compared to
state-of-the-art DRAM TRNGs because QUAC-TRNG achieves
greater throughput.
8. Sensitivity Analysis
Temperature Dependence. We study the e�ects of tempera-
ture on the entropy of QUAC operations by recording bitline
entropies at 50◦C, 65◦C, and 85◦C on 40 real DRAM chips from
5 DRAM modules. We observe two trends: Trend-1, bitline
entropy increases with temperature (24 chips), and trend-2,
bitline entropy decreases with temperature (16 chips). We cal-
culate the maximum and the average segment entropy (sum of
all bitline entropies in that segment) independently for chips
that follow trend-1 and trend-2. Figure 14 plots the maximum
and average segment entropy at 50◦C, 65◦C, and 85◦C.
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Figure 14: Maximum and average segment entropy at di�erent
temperatures.

We observe that the entropy in QUAC operations changes
with temperature. The maximum (average) segment entropy is
2019.6 (1442.0), 2389.8 (1569.5) and 2520.1 (1659.6) at 50◦C, 65◦C
and 85◦C for DRAM chips that follow trend-1, respectively. The
maximum (average) segment entropy is 2344.2 (1710.6), 1565.8
(1083.1) and 1293.5 (892.5) at 50◦C, 65◦C and 85◦C for DRAM
chips that follow trend-2, respectively. We conclude that a
QUAC-TRNG implementation needs to account for changes
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in temperature while generating true random numbers, as
segment entropy changes with temperature.

To maintain the same amount of entropy (256-bits) in SHA-
256 input blocks at di�erent temperatures, the memory con-
troller stores a list of column address sets for non-overlapping
temperature ranges. This list is initialized by identifying high-
entropy DRAM segments at di�erent temperatures during a
one-time o�ine characterization step. QUAC-TRNG accesses
an element in the list depending on DRAM temperature (e.g.,
measured via temperature sensors [76]) and retrieves a set of
column addresses, where each address points to a contiguous
range of cache blocks in the DRAM segment with 256-bits of en-
tropy. QUAC-TRNG uses these sets to split the data read from
the high-entropy DRAM segment into SHA-256 input blocks.
In this way, QUAC-TRNG ensures that SHA-256 input blocks
always contain 256-bits of entropy at di�erent temperatures.
Time Dependence. To understand whether the quality of the
random numbers that QUAC-TRNG generates changes over
time, we study the entropy generated by QUAC operations at
the beginning and end of a 30-day period using 40 chips from
�ve modules. The average segment entropy for the highest-
entropy data pattern (“0111”, Section 6.1.2) does not change
signi�cantly. The di�erence between the average entropy of
8K segments at the beginning and at the end of the testing
period is on average (maximum, minimum) 2.4% (5.2%, 0.9%)
across �ve modules (see Appendix A, Table 3). We conclude
that the entropy generated by QUAC operations is not sig-
ni�cantly a�ected by time elapsed on the order of a month,
so the characterized segment entropy is valid for at least 30
days. Therefore, in the worst-case, QUAC-TRNG needs to
re-characterize segment entropy only once a month.
9. System Integration

We discuss how QUAC-TRNG can be integrated into a real
system. QUAC-TRNG generates random values by repeatedly
(i) performing QUAC on the highest-entropy (Section 6.1.4)
DRAM segments in four banks from four di�erent DRAM bank
groups, and (ii) post-processing the result of QUAC operations
using the SHA-256 hash function.
Post Processing. QUAC-TRNG uses a cryptographic hash
function to post-process random bitstreams produced by QUAC
operations. We choose to evaluate QUAC-TRNG using SHA-
256 as the post-processing function since SHA-256 is a se-
cure cryptographic hash function that can be implemented
e�ciently in hardware at low area and latency costs [3, 17,
131]. This makes SHA-256 well-suited to implementation in
the memory controller. We account for the costs of SHA-256
hardware in our evaluations based on values reported by re-
cent work [17]: 65 clock cycle latency (at 5.15 GHz), 19.7 Gb/s
throughput, and 0.001 mm2 area at a 7 nm process technology
node.
QUAC-TRNG User Application Interface. QUAC-TRNG
generates random numbers using QUAC operations. To per-
form QUAC operations, the memory controller needs to issue
an ACT→ PRE→ ACT command sequence with reduced
tRAS and tRP timing parameters. Upon receiving a request
for a random number, the memory controller checks if there
is available DRAM bandwidth to perform QUAC operations
and issues the command sequence with reduced timing pa-
rameters. This functionality can be implemented in a simple
state machine in the memory controller’s command schedul-

ing logic. To eliminate delays when an application requests
random numbers, the memory controller may periodically uti-
lize available DRAM bandwidth to generate and store random
numbers in a small bu�er in the memory controller, as pro-
posed in D-RaNGe [88]. In this way, an application’s request
for random numbers can be ful�lled immediately (up to the
bu�er size).

In order to use QUAC-TRNG in a real system, the designer
needs to expose an interface to user applications. There are
numerous possible ways to implement this interface, including
memory- or PCIe- mapped con�guration status registers, CPU
co-processor and I/O instructions, and specialized extensions
to the ISA. We leave it to the system designer to choose the
best approach that meets the design goals for their system.
Memory Overhead. QUAC-TRNG allocates a small number
of DRAM rows from one bank in four bank groups. We allocate
one DRAM segment (four rows) to perform QUAC operations
on and two DRAM rows to initialize the DRAM segment using
in-DRAM copy operations. To fully utilize the DDR4 band-
width, QUAC-TRNG simultaneously activates four segments in
four bank groups (one bank in each bank group) and reads data
from each bank in an interleaved manner. (Section 7.2). Thus,
we allocate four segments (for QUAC) and 8 DRAM rows (for
bulk initialization) across four banks in di�erent bank groups.
This amounts to 192 KB of total reserved space, which makes
up only 0.002% of the capacity of an 8 GB DDR4 module.
Area Overhead. QUAC-TRNG stores 4 DRAM row addresses
to point to the starting row addresses of the highest-entropy
DRAM segments and 8 DRAM row addresses to point to
the source operands for in-DRAM copy operations in four
DRAM banks from four di�erent bank groups. QUAC-TRNG
also stores 11 DRAM column addresses11 to indicate the non-
overlapping cache block ranges that contain 256-bits of entropy
each. These cache block ranges change according to system
temperature (Section 8). We assume there are as many as 10
distinct temperature ranges in calculating the area overhead.
In total, to store the row and column addresses, QUAC-TRNG
uses 1316 bits of storage. We model the required area for this
storage using CACTI [1] and �nd that it is 0.0003 mm2. With
the SHA-256 core, QUAC-TRNG requires 0.0014 mm2 area to
implement in 7nm process technology, which is only 0.04% the
chip area of a contemporary CPU designed at 7nm [11, 147].
10. Related Work

To our knowledge, this is the �rst work to (i) demonstrate
that quadruple row activation (QUAC) in DRAM chips leads
to random values by inducing metastability in DRAM sense
ampli�ers, (ii) exploit this phenomenon to design a new true
random number generator, QUAC-TRNG. We have already
extensively compared QUAC-TRNG to two state-of-the-art
high-throughput TRNG designs [15, 88] in Section 7.4. In this
section, we describe other related works.
10.1. Low-throughput DRAM-based TRNGs
Pyo et al. [126] (Table 2, Pyo+) generate random numbers
using the unpredictability in DRAM command schedule as the
entropy source. We calculate the peak theoretical throughput
for Pyo+ as 2.17 Mb/s from the number of CPU cycles (45000)
that it takes to obtain an 8-bit random number for the system

11To sustain the maximum 5.4 Gb/s TRNG throughput (Section 7.2) in
modules where there are 11 SHA-256 input blocks with 256-bits of entropy in
the highest-entropy segment.
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we describe in Section 7.3. We �nd the latency of obtaining a
256-bit random number to be 112.5us.
Retention-based TRNGs [81, 150] (i) pause DRAM refresh
to accumulate a su�cient amount of retention failures [82]
that is used as the entropy source for true random number
generation, (ii) read the portion of the DRAM array that con-
tains the retention failures, and (iii) post-process the read data
using hash functions (e.g., SHA-256) to �nally obtain a random
number.

D-PUF [150] (Table 2, D-PUF) partitions the DRAM into 4
MiB large regions and pauses DRAM refresh for 40 seconds
for a region to accumulate a su�cient amount of retention
failures in DRAM. D-PUF uses the SHA-256 hash function
to post-process the data read from each region to generate a
256-bit random number. This incurs a minimum latency of
40 seconds to generate random numbers. We optimistically
calculate the throughput of D-PUF assuming a four-channel
system with 128 GiBs of DRAM. We also ignore the time it
takes to read out 128 GiBs of data. When 1% of available DRAM
(i.e., approximately 327 4 MiB large regions) is reserved for
retention failures, D-PUF’s TRNG throughput is 0.002 Mb/s.
Even when all DRAM (32K regions) is used, D-PUF can achieve
only 0.20 Mb/s peak throughput.

Keller+ [81] (Table 2, Keller+) partitions the DRAM into 1
MiB large regions and pauses DRAM refresh for 320 seconds.
Following an analysis similar to ours on D-PUF [150], we �nd
Keller+’s TRNG latency for a 256-bit random number to be
320 seconds and its TRNG throughput to be only 0.025 Mb/s,
assuming a four-channel system with 128 GiB DRAM fully
utilized for true random number generation.
Startup value-based TRNGs [47] (Table 2, DRNG) use the
startup values in DRAM cells that are accessed immediately
after a DRAM device is powered up. These TRNGs cannot
be used as a streaming true random number source as they
require a DRAM power cycle to generate random numbers. We
estimate the minimum latency of this category of TRNGs from
the time it takes to execute a DDR4 power-up initialization
sequence [143], which is 700 µs.

All these DRAM-based TRNGs provide very low random
number generation throughput and incur high latency. Low-
throughput TRNGs are unlikely to be useful in satisfying to-
day’s workloads with high throughput random number require-
ments (e.g., machine learning, cryptography, simulations [27,
37, 40, 42, 46, 61, 73, 85, 97, 108, 109, 112, 127, 132, 146, 161,
166, 169, 170]). QUAC-TRNG, on the other hand, can satisfy
the high-throughput requirements of these workloads.

10.2. Non-DRAM-based TRNGs That Require
Specialized Hardware

Many prior works design high-throughput TRNGs that are
based on specialized hardware [9, 21, 28, 29, 43, 56, 68, 69, 95,
104, 110, 121, 125, 145, 154, 163, 167]. Unfortunately, it is costly
to integrate these substrates into especially low-cost commod-
ity systems as well as future processing-in-memory systems
for true random number generation. Existing TRNGs in some
commodity systems [10, 12, 78] both (i) consume die area to
implement specialized circuitry (e.g., ring oscillators [117])
that harnesses entropy from physical phenomena and (ii) are
limited in throughput. For example, the TRNG in a recent
high-end AMD Zen3 processor can provide up to 3.18 Gb/s

throughput per core, assuming a 4 GHz clock rate [51], which
is only 23.11% of the throughput QUAC-TRNG can provide (on
a four-channel DDR4-2400 system).

In general, choosing a TRNG is a design-time decision that
requires balancing needs with costs. QUAC-TRNG provides
high-throughput true random number generation without in-
troducing dedicated hardware for TRNGs. Instead, QUAC-
TRNG leverages widely-used commodity DRAM as an entropy
source. Therefore, QUAC-TRNG o�ers a new design point that
can enable new applications that were previously infeasible
with alternative TRNGs, especially for systems where the costs
of on-chip TRNGs may be prohibitive (e.g., heavily constrained
embedded systems, processing-in-memory architectures). For
example, QUAC-TRNG would enable processing-in-memory
systems [62, 116, 137, 157] to execute security workloads as
it enables true random number generation directly within a
DRAM chip.

10.3. Multiple Row Activation In DRAM
Ambit [137] and ComputeDRAM [53]. Seshadri et

al. [134, 136, 137, 140] introduce the idea of triple row activa-
tion in DRAM, showing that this operation leads to a bitwise
majority function across the three activated rows. Compute-
DRAM [53] shows that a similar behavior can be observed in
real o�-the-shelf DRAM chips by carefully reducing the timing
parameters between consecutive DRAM commands. We build
on these works and introduce quadruple activation (QUAC),
which leads to a fundamentally di�erent phenomenon on real
o�-the-shelf DRAM chips, i.e., simultaneous activation of four
DRAM rows. We exploit this phenomenon to generate true
random numbers at high-throughput and low-latency.
CROW [65] and MCR-DRAM [39] propose a DRAM-

based substrate to simultaneously activate multiple DRAM
rows with the same data content to reduce access latency. Row-
Clone [135] enables consecutive activation of two DRAM rows
to copy data in DRAM. These mechanisms (i) require changes
to DRAM chips and (ii) do not generate random numbers.

11. Conclusion
We introduce QUAC-TRNG, a high-throughput and low-

latency DRAM-based TRNG that can be implemented in com-
modity systems at low cost. The key idea of QUAC-TRNG is
to induce metastability on many DRAM sense ampli�ers in
parallel by exploiting a phenomenon we observe, quadruple
row activation (QUAC), which simultaneously activates four
DRAM rows in real DRAM chips. Via a detailed characteri-
zation of 136 real DRAM chips, we show that QUAC-TRNG
produces random bitstreams that pass all 15 NIST STS tests,
and generates high-quality true random numbers at 3.44 Gb/s
throughput. We compare QUAC-TRNG against prior work
that we evaluate under two con�gurations, basic (as proposed)
and enhanced (throughput-optimized). QUAC-TRNG outper-
forms the state-of-the-art DRAM-based TRNG in throughput
by 15.08× and 1.41× for the basic and the enhanced con�g-
urations, respectively. QUAC-TRNG scales well with DRAM
bandwidth and outperforms the enhanced version of the state-
of-the-art by 2.03× at projected future DRAM transfer rates
(12 GT/s). We conclude that QUAC-TRNG reliably generates
true random numbers at high-throughput and low-latency in
real DRAM chips.
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A. Appendix
Table 3: Sample population of 17 DDR4 modules

Module Module Identi�er Chip Identi�er Freq.
(MT/s)

Organization Segment Entropy

Size
(GB) Chips Pins Avg. Max.†

Avg.
(after 30 days)

M1 Unknown H5AN4G8NAFR-TFC 2133 4 8 x8 1688.1 2247.4 –
M2 Unknown Unknown 2133 4 8 x8 1180.4 1406.1 –
M3 Unknown H5AN4G8NAFR-TFC 2133 4 8 x8 1205.0 1858.3 1192.9
M4 76TT21NUS1R8-4G H5AN4G8NAFR-TFC 2133 4 8 x8 1608.1 2406.5 1588.0
M5 Unknown T4D5128HT-21 2133 4 8 x8 1618.2 2121.6 –
M6 TLRD44G2666HC18F-SBK H5AN4G8NMFR-VKC 2666 4 8 x8 1211.5 1444.6 –
M7 TLRD44G2666HC18F-SBK H5AN4G8NMFR-VKC 2666 4 8 x8 1177.7 1404.4 –
M8 TLRD44G2666HC18F-SBK H5AN4G8NMFR-VKC 2666 4 8 x8 1332.9 1600.9 1407.0
M9 TLRD44G2666HC18F-SBK H5AN4G8NMFR-VKC 2666 4 8 x8 1137.1 1370.9 –
M10 TLRD44G2666HC18F-SBK H5AN4G8NMFR-VKC 2666 4 8 x8 1208.5 1473.2 1251.8
M11 TLRD44G2666HC18F-SBK H5AN4G8NMFR-VKC 2666 4 8 x8 1176.0 1382.9 1165.1
M12 TLRD44G2666HC18F-SBK H5AN4G8NMFR-VKC 2666 4 8 x8 1485.0 1740.6 –
M13 KSM32RD8/16HDR H5AN4G8NAFA-UHC 2400 4 8 x8 1853.5 2849.6 –
M14 F4-2400C17S-8GNT H5AN4G8NMFR-UHC 2400 8 8 x8 1369.3 1942.2 –
M15 F4-2400C17S-8GNT H5AN4G8NMFR-UHC 3200 8 8 x8 1545.8 2147.2 –
M16 KSM32RD8/16HDR H5AN8G8NDJR-XNC 3200 16 8 x8 1634.4 1944.6 –
M17 KSM32RD8/16HDR H5AN8G8NDJR-XNC 3200 16 8 x8 1664.7 2016.6 –

†The maximum possible entropy in a DRAM segment is 64K (65,536) bits.
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