
QUAC-TRNG: High-Throughput True Random Number Generation
Using Quadruple Row Activation in Commodity DRAM Chips

Ataberk Olgun§† Minesh Patel§ A. Giray Yağlıkçı§ Haocong Luo§

Jeremie S. Kim§ F. Nisa Bostancı§† Nandita Vijaykumar§� Oğuz Ergin† Onur Mutlu§

§ETH Zürich †TOBB University of Economics and Technology �University of Toronto

True random number generators (TRNG) sample random phys-
ical processes to create large amounts of random numbers for
various use cases, including security-critical cryptographic prim-
itives, scienti�c simulations, machine learning applications, and
even recreational entertainment. Unfortunately, not every com-
puting system is equipped with dedicated TRNG hardware, lim-
iting the application space and security guarantees for such sys-
tems. To open the application space and enable security guar-
antees for the overwhelming majority of computing systems
that do not necessarily have dedicated TRNG hardware (e.g.,
processing-in-memory systems), we develop QUAC-TRNG, a new
high-throughput TRNG that can be fully implemented in com-
modity DRAM chips, which are key components in most modern
systems.
QUAC-TRNG exploits the new observation that a carefully-

engineered sequence of DRAM commands activates four con-
secutive DRAM rows in rapid succession. This QUadruple AC-
tivation (QUAC) causes the bitline sense ampli�ers to non-
deterministically converge to random values when we activate
four rows that store con�icting data because the net deviation in
bitline voltage fails to meet reliable sensing margins.

We experimentally demonstrate that QUAC reliably generates
random values across 136 commodity DDR4 DRAM chips from
one major DRAM manufacturer. We describe how to develop an
e�ective TRNG (QUAC-TRNG) based on QUAC. We evaluate the
quality of our TRNG using the commonly-used NIST statistical
test suite for randomness and �nd that QUAC-TRNG success-
fully passes each test. Our experimental evaluations show that
QUAC-TRNG reliably generates true random numbers with a
throughput of 3.44 Gb/s (per DRAM channel), outperforming
the state-of-the-art DRAM-based TRNG by 15.08× and 1.41×
for basic and throughput-optimized versions, respectively. We
show that QUAC-TRNG utilizes DRAM bandwidth better than
the state-of-the-art, achieving up to 2.03× the throughput of a
throughput-optimized baseline when scaling bus frequencies to
12 GT/s.

1. Introduction
True random numbers are used in a wide range of applica-

tions, including cryptography, scienti�c simulations, machine
learning, and recreational entertainment [14, 16, 18, 37, 46,
61, 85, 97, 109, 112, 127, 130, 132, 146, 151, 160, 161, 166, 169,
170]. These applications often require a high-throughput true
random number generator (TRNG) that is resilient to varia-
tions in operating conditions (e.g., temperature and voltage
�uctuations) and is secure against malicious attacks [167].

Unfortunately, not all computing systems are provisioned
with dedicated TRNG hardware, limiting their ability to run
such applications e�ectively. In order to address this issue,

many works have attempted to provide true random number
generators purely using commodity hardware components
that can be found in most systems today (e.g., DRAM [15, 81,
88, 126, 150] and SRAM [67, 68, 158]).

Using DRAM as the entropy source for generating true ran-
dom numbers (i.e., DRAM-based TRNG) is a promising ap-
proach to providing a TRNG to a variety of computing systems
ranging from high-performance servers, low-power edge de-
vices, and systems that employ processing-in-memory [157]
due to the widespread adoption of DRAM as main memory
across these systems. However, prior proposals for DRAM-
based TRNGs (i) have high latencies in generating random
numbers because they rely on fundamentally slow processes
(e.g., retention failures [63, 81, 149, 153], DRAM start-up val-
ues [47]) or (ii) generate random numbers at low throughput be-
cause they either use small portions of selected DRAM rows as
an entropy source (e.g., tRCD failure-based [88]) or use whole
DRAM rows as an entropy source but fail to induce metasta-
bility in many sense ampli�ers (e.g., tRP failure-based [15]).

Our goal in this work is to develop a TRNG that uses com-
modity DRAM devices to generate random numbers with both
high throughput and low latency. To achieve this, we leverage
the novel observation that a carefully-engineered sequence
of DRAM commands (described in Section 4) activates four
DRAM rows in quick succession in commodity DRAM chips
from one major DRAM manufacturer (SK Hynix), a process
we refer to as QUadruple ACtivation (QUAC).

Our key idea is to leverage QUAC as a substrate for low-
latency and high-throughput DRAM-based TRNGs. When
activating rows that are initialized with con�icting data (e.g.,
data ‘0’ in two rows and data ‘1’ in the other two), bitline sense
ampli�ers non-deterministically converge to random values
based on their individual circuit characteristics resulting from
manufacturing process variation. Using QUAC operations to
induce metastability in many DRAM sense ampli�ers in paral-
lel enables high-throughput and low-latency random number
generation.

To this end, we develop QUAC-TRNG, a DRAM-based TRNG
that repeatedly performs QUAC operations in DRAM and pro-
cesses the results of these operations using a cryptographic
hash function [50] to generate random numbers with high
throughput. One QUAC-TRNG iteration consists of �ve key
steps: QUAC-TRNG (i) identi�es four consecutive DRAM rows,
(ii) initializes the rows with con�icting data patterns (e.g., data
‘0’ in two rows and data ‘1’ in the other two), (iii) performs a
QUAC operation on the rows by issuing a sequence of DRAM
commands, (iv) reads the result of the operation from the sense
ampli�ers, and (v) performs the SHA-256 cryptographic hash
function [50] to post-process the result and output random
numbers. Our experimental evaluation using 136 real DDR4
DRAM chips from 17 real DDR4 modules (Section 6) shows

1

that QUAC-TRNG generates an average of 7664 bits of random
data per iteration and each iteration takes 1940 ns.

Compared to previously-proposed DRAM-based TRNGs [15,
47, 74, 81, 88, 126, 150], QUAC-TRNG enables (i) lower latency
because it only requires simultaneous activation of consecutive
rows, which can be performed quickly using DRAM commands,
and (ii) higher throughput because it uses QUAC operations
to induce metastability in many sense ampli�ers in parallel.

We evaluate QUAC-TRNG’s quality by showing that random
bitstreams generated using real DRAM chips pass the NIST
statistical test suite [20] (Section 7.1). We then quantitatively
evaluate QUAC-TRNG’s performance against two state-of-the-
art DRAM-based TRNG proposals [15, 88] (Section 7.4). For
each prior proposal, we consider two con�gurations: (i) an
unmodi�ed base version as proposed in the original paper and
(ii) an enhanced version that we believe represents a more fair
comparison against our work. The enhanced versions incor-
porate optimizations to improve throughput and employ the
SHA-256 hash function for post-processing. Our results show
that QUAC-TRNG’s throughput is 15.08× and 1.41× that of the
best prior DRAM-based TRNG for the basic and enhanced con-
�gurations, respectively. We show that QUAC-TRNG scales
quasi-linearly with available DRAM bandwidth, outperforming
the enhanced con�guration of the best prior DRAM TRNG by
up to 2.03x at future DRAM transfer rates. We also study and
demonstrate how QUAC-TRNG can be integrated into a real
system (Section 9) with minor performance, memory capacity,
and CPU die area costs.

We make the following key contributions:
• We make the novel observation that a carefully engineered

sequence of DRAM commands can activate four DRAM rows
in quick succession. We refer to this operation as QUadruple
ACtivation (QUAC). We show that QUAC operations can
induce metastability in DRAM bitline sense ampli�ers, which
we exploit to generate true random numbers.

• We introduce QUAC-TRNG, a new high-throughput TRNG
based on QUAC operations that is suitable for commodity
DRAM chips. QUAC-TRNG combines the bene�ts of two
components to generate high-quality true random numbers
with high throughput: (i) massive parallelism in true ran-
dom number generation available in DRAM sense ampli-
�ers and (ii) randomness quality improvements provided by
the SHA-256 hash function to generate random numbers at
signi�cantly higher throughput than previously-proposed
DRAM-based TRNGs.

• We experimentally demonstrate that QUAC-TRNG is a high-
quality TRNG by showing that the random bitstreams QUAC-
TRNG generates pass all the standard NIST statistical test
suite randomness tests [20].

• We show that QUAC-TRNG improves throughput over state-
of-the-art DRAM-based TRNG proposals [15, 88], achieving
15.08× and 1.41× the throughput of basic and throughput-
optimized baselines, respectively.

• We present a detailed experimental characterization study
of the randomness provided by QUAC operations using 136
real DDR4 chips (from 17 DDR4 modules). We show that
(i) QUAC-TRNG is suitable for implementation in commod-
ity DRAM chips, and (ii) the randomness provided by QUAC
operations remains stable over time.

2. Background
2.1. DRAM Structure and Organization

DRAM-based main memory is organized hierarchically. A
processor is connected to one or many memory channels. Each
channel has its own command, address, and data buses. Mul-
tiple memory modules can be plugged into a single channel.
Each module contains several DRAM chips, which are grouped
into ranks. Each rank contains multiple banks that are striped
across the chips that form the rank but operate independently.
Particular standards cluster multiple banks in bank groups [76,
77]. Data transfers between DRAM memory modules and pro-
cessors occur at a cache block granularity.
DRAM Bank Organization. A DRAM bank is divided into
multiple subarrays [33, 93, 140]. Each subarray comprises mul-
tiple wordline drivers and sense ampli�ers (SAs), as shown in
Figure 1-Ê. Subarrays are further divided into DRAM MATs.
Figure 1-Ë shows a DRAM MAT. DRAM MATs are separated
from each other by wordline (WL) drivers that are activated to
drive a DRAM wordline within the DRAM MAT. In a DRAM
MAT, DRAM cells are organized into a two-dimensional struc-
ture over bitlines and wordlines. The set of cells over the same
wordline forms a DRAM row, as depicted in Figure 1-Ì.

W
L

 D
ri

ve
rs

W
L

 D
ri

ve
rs

...

W
L

 D
ri

ve
rs

...

...

Sense Amplifiers Sense Amplifiers

... ...

D
R

A
M

 S
u

b
ar

ra
y

1

Capacitor

DRAM
Cell

4

Wordline

B
it

lin
e

 DRAM MAT 2

DRAM Row3

... ...

...

...

Figure 1: DRAM subarray, MAT, row and cell organization
Accessing DRAM. A DRAM cell (Figure 1-Í) stores data as a
voltage level between the supply voltage (VDD) and ground in
its capacitor. Each cell is connected to a bitline via an access
transistor. When all rows are closed, bitlines are precharged to
the half of supply voltage (VDD/2). Accessing a cell requires
activating the corresponding row by issuing an (ACT) com-
mand. The activation process starts with enabling a wordline,
which enables all access transistors in the row. As the access
transistors are turned on, each cell shares its charge with the
corresponding bitline, causing deviation on the bitline voltage
either towards VDD or ground. Each SA ampli�es a bitline’s
voltage to either VDD or 0 as the deviation in bitline voltage
exceeds a threshold voltage (Vth). Read and write operations
can be issued to SAs only after the row activation is completed.
A precharge (PRE) command is used to close a row and set the
bitline voltage to VDD/2.
DRAM Timing Parameters. A memory controller must
obey the DRAM timing parameters de�ned in standards set by
JEDEC (e.g., DDR4 [76]) while scheduling DRAM commands.
Figure 2 presents a timeline of DRAM commands on the com-
mand bus. Consecutive ACT and PRE commands on the com-
mand bus must be interleaved by at least tRAS (i.e., ACT→
PRE timing parameter) (Ê). This is because a row needs to be ac-
tive for at least as long as tRAS to allow its cells to fully restore
their charge. The time window between a PRE and an ACT
command on the command bus must be at least tRP (Ë). This
is required to settle the bitline voltage to VDD/2 and to disable
the activated wordline. Back-to-back ACT commands to dif-
ferent bank groups and to di�erent DRAM banks (in the same
bank group) must be interleaved with latencies of tRRD_S (Ì)

2

and tRRD_L (Í), respectively. tRRD_S and tRRD_L are usually
small (3.00, 4.90 ns in DDR4-2666 [76]). This enables overlap-
ping the activation latency of DRAM rows in di�erent banks
or bank groups.

BankGroup 0, Bank 0 ACT

BankGroup 1, Bank 0

time

RD PRE ACT

BankGroup 0, Bank 1 ACT

ACT

① ②

③

④

tRAS tRP

tRRD_S

tRRD_L

Figure 2: Timeline of key DDR4 commands.
DRAM manufacturers set large guardbands around DRAM

timing parameters to guarantee correct operation [32, 35, 90,
101, 102]. A large body of work characterizes DRAM behav-
ior under non-standard DRAM timing parameters to demon-
strate that violating DRAM timing parameters allows improv-
ing DRAM access latency [30–32, 35, 45, 86, 90, 99, 101, 102],
generating random numbers [15, 86, 88], implementing physi-
cal unclonable functions (PUFs) [15, 86, 87], and copying data
and performing bitwise AND/OR in DRAM [53] on commodity
DRAM devices.
2.2. True Random Number Generators

True random number generators (TRNGs) [96] harness en-
tropy from random physical phenomena to generate random
numbers. These entropy sources are often biased [96, 146], so
practical TRNG designs often use post-processing methods to
remove bias in their entropy sources, i.e., to strengthen the qual-
ity of the random numbers they produce (e.g., hashing [129]
and other whitening algorithms [78, 161]). Post-processing
can constrain TRNG throughput and latency, potentially re-
quiring additional resources (e.g., output bu�ering) to o�set
its impact.
3. Motivation and Goal

High-quality random numbers are crucial to many technolo-
gies and applications [27, 37, 40, 42, 46, 61, 73, 85, 97, 108, 109,
112, 127, 132, 146, 161, 166, 169, 170]. In particular, random
numbers are used widely in cryptographic communication
protocols (e.g., key generation to initialize communication, sig-
nature and �ngerprint generation to authenticate remote par-
ties) to form secure channels between computing systems and
networked devices. These protocols require an unpredictable,
high-quality stream of true random numbers to remain secure
against cryptographic attacks [37, 160] that aim to breach
highly valuable, con�dential user data. Some emerging key
distribution protocols (e.g., quantum key distribution) provide
even stronger security guarantees that make them resilient
against a more diverse set of attacks [40, 108]. These protocols
require TRNG throughputs on the order of several Gb/s [165].
Other than cryptography, high-throughput TRNGs are useful
for other applications such as scienti�c simulations [27, 42,
73, 109], machine learning [112, 132, 166, 169], and gaming
applications [146].
High-throughput TRNGs. Many prior works develop and
demonstrate high-throughput TRNGs that use specialized hard-
ware (e.g., optics [56, 104, 145, 156], ring oscillators [9, 29, 163,
167], chaotic circuits [43, 121]) to generate random numbers.
Unfortunately, these proposals typically either (i) need to be in-

tegrated at design time, rendering them unsuitable for existing
systems or (ii) are costly, limiting their potential for widespread
adoption. To overcome these limitations and enable the afore-
mentioned applications across computing systems ranging
from high-performance servers to low-power edge devices, it
is important to enable high-quality random number generation
using existing commodity hardware.
DRAM-based TRNGs. DRAM is a promising substrate for
true random number generation because DRAM chips are
ubiquitous throughout contemporary computing platforms.
DRAM-based TRNGs can be integrated into commodity sys-
tems at low cost with minimal e�ort [88], thereby enabling
high-throughput random number generation across a broad
spectrum of both (i) existing and (ii) future computing systems.
SynergyWith PIM. Processing-in-memory (PIM) systems im-
prove system performance and/or energy consumption by per-
forming computations directly within a memory chip, thereby
avoiding unnecessary data movement [25, 26, 57, 58, 60, 116,
118, 137, 139]. Prior works propose a broad range of PIM sys-
tems [5–8, 13, 22–24, 34, 38, 44, 48, 49, 54, 55, 58, 59, 65, 66,
71, 72, 89, 98, 100, 103, 107, 113, 115, 119, 120, 124, 133–135,
137–139, 142, 148, 164, 168] in the context of various workloads
and memory devices. Enabling new PIM workloads (e.g., secu-
rity applications) that rely on high-quality random numbers
requires allowing the PIM system to perform TRNG operations
directly within the memory to both (1) avoid ine�cient o�-
chip communication to other possible TRNG sources, and (2)
to enhance the overall security and privacy of PIM systems.
Shortcomings of Prior Work. Prior proposals for DRAM-
based TRNGs either (i) have high latencies in generating ran-
dom numbers because they rely on fundamentally slow pro-
cesses (e.g., retention failures [63, 81, 149, 153], DRAM start-up
values [47]) or (ii) generate random numbers at low throughput
because they either use small portions of selected DRAM rows
as entropy source (e.g., tRCD failure-based [88]) or use whole
DRAM rows as entropy source but fail to induce metastability
on many sense ampli�ers (e.g., tRP failure-based [15]).

TRNGs based on DRAM start-up values [47] require a power
cycle to generate random bits. This mechanism is impractical
for a high-throughput TRNG because it both (i) incurs very
high random number generation latency and (ii) precludes gen-
erating random bits in a streaming manner. TRNGs based on
DRAM retention failures [81, 150] need to accumulate DRAM
retention failures over long periods of time to harness enough
entropy to generate random numbers. DRAM cells �ip very
infrequently due to retention failures as many DRAM cells
retain data for hours [82, 106, 123, 128, 159]. The throughput
of activation latency-based TRNGs [15, 88] is constrained by
the amount of entropy they can harness from small portions
of selected DRAM rows, a DRAM cache block. For example, D-
RaNGe [88] can only use up to 4 out of the 64K bits available for
random number generation. Precharge latency-based TRNGs
induce bit-�ips on many DRAM cells in parallel on DRAM row
granularity. However, the proportion of randomly-failing cells
among all cells in a DRAM row following precharge latency
failures is very low.1

We posit from our analysis of prior work that a high-
throughput DRAM-based TRNG needs to (i) exploit DRAM
failure mechanisms that are inherently fast and random (e.g.,

1Section 7.4 provides a rigorous analysis of prior DRAM-based TRNGs

3

timing failures), (ii) harness entropy from large portions of
selected DRAM rows, and (iii) induce random behavior on a
large proportion of sense ampli�ers.
Our goal is to develop a new TRNG mechanism that uses

commodity DRAM devices to robustly generate high-quality
random numbers with higher throughput and low latency.
4. Quadruple Activation

We observe a new phenomenon, which we call quadruple
activation (QUAC), in commodity DRAM modules. We �nd
that by issuing a sequence of three standard DDR4 commands
(ACT→ PRE→ ACT) with reduced timings (e.g., 2.5 ns), four
consecutive DRAM rows in the same subarray are activated
simultaneously. We identify the following two characteristics
of QUAC. First, QUAC can simultaneously activate a set of four
DRAM rows whose row addresses di�er only in their two least
signi�cant bits (e.g., rows {0,1,2,3}). We refer to each such set
of four DRAM rows as a DRAM segment. Second, we observe
QUAC only when the twoACT commands target row addresses
whose two least signi�cant bits are inverted. In other words,
the two ACT commands should target rows 0 and 3 (00 and
11 in base 2), or rows 1 and 2 (01 and 10 in base 2) within a
DRAM segment.

To explain the potential mechanism behind QUAC, we ex-
amine the array architecture in state-of-the-art high-density
DRAM chips. We hypothesize that the hierarchical design of
wordlines allows QUAC to simultaneously activate four rows in
a segment, and we present a hypothetical row decoder circuit
that explains why the row addresses of the two ACT com-
mands must have their two least signi�cant bits set to inverted
values.
4.1. Hierarchical Wordlines

High density and performance requirements have pushed
DRAM designers to architect high-density, low-latency DRAM
array architectures [114]. A commonly-used design pattern in
architecting such DRAM arrays is to hierarchically organize
DRAM wordlines to reduce latency and improve density [2, 36,
101, 155]. Figure 3 shows a DRAM MAT with the hierarchical
wordline design.

M
a

s
te

r
W

o
rd

li
n

e
 D

ri
v

e
rs

LWL

DriverS2 S1S0 Bitline

D0
D1

D2

S3

D3

Master Wordline (MWL)

Local Wordline (LWL)

Figure 3: DRAMMAT with hierarchical wordlines

In the hierarchical wordline design, a DRAM row address
is partitioned into two pieces. The higher-order bits of the
row address are used to select and activate a master wordline
(MWL). The MWL is connected to four local wordline (LWL)
drivers (D0, D1, D2, D3 in Figure 3) that are used to activate
four consecutive DRAM rows in a MAT. The least signi�cant
two bits of the row address are used to assert one of the four
LWL select lines (S0 to S3) to enable an LWL driver and �nally

activate a DRAM row.
An activated MWL potentially drives four consecutive LWLs

that form a segment. We hypothesize that the QUAC command
sequence (ACT-PRE-ACT) asserts S0 to S3 approximately at
the same time, resulting in simultaneous activation of four
consecutive DRAM rows.
4.2. Hypothetical Row Decoder

We present a hypothetical row decoder circuit design that
supports QUAC operations. The decoder design simultane-
ously activates four DRAM rows when the DRAM chip receives
a series of ACT-PRE-ACT commands with violated timing pa-
rameters. Figure 4 illustrates our row decoder circuit, which
operates on the least signi�cant two bits of row addresses.

Addr[0]
= 0

L

L

L

L

A0b

A0

A1b

A1

S0
A0b
A1b S0
A0b
A1b

S1
A0

A1b S1
A0

A1b

S2
A0b

A1 S2
A0b

A1

S3
A0
A1 S3
A0
A1

A0b

A0

A1b

A1

S0
A0b
A1b S0
A0b
A1b

S1
A0

A1b

S2
A0b

A1

S3
A0
A1

L

L

L

L

Addr[1]
= 0

Addr[0]
= 1

Addr[1]
= 1

ACT R0 ACT R3

Figure 4: Hypothetical row decoder circuit that enables QUAC.
The red and black colors represent asserted and de-asserted
signals, respectively.

The �rst ACT command (Figure 4, left) targeting Row 0 (R0,
Addr[1:0] = “00”) sets the latches (L) that drive the signals A0b
and A1b. These signals are combined through a logical-AND
operation to form S0, which enables the LWL driver that ac-
tivates R0. The following PRE command cannot deactivate
R0 nor reset the latches that drive A0b and A1b, as the tRAS

parameter is violated. The second ACT command (Figure 4,
right) targeting Row 3 (R3, Addr[1:0] = “11”) sets the latches
that drive the signals A0 and A1. After the second ACT com-
mand, all four control signals (i.e., A0, A0b, A1, and A1b) are
enabled since the previous PRE command fails to reset the
latches. Together, these signals assert S1, S2, and S3, enabling
the LWLs that activate R1, R2, and R3, respectively. Since R0
is still activated, this results in simultaneous activation of all
four rows in a DRAM segment.

We con�rm that QUAC activates four DRAM rows through
an experiment with real DRAM chips. We �rst initialize a
DRAM segment with a prede�ned data pattern. We then per-
form a QUAC operation on the DRAM segment to simultane-
ously activate four rows. Next, we write a new data pattern
to the sense ampli�ers while all four rows are active. Finally,
we precharge the bank and individually read each row while
obeying manufacturer-recommended DRAM timing parame-
ters. We observe that all four rows are updated with the new
data pattern we write. We observe valid QUAC operations in
136 DDR4 chips from one major DRAM manufacturer.
4.3. Future QUAC Interfaces

Even though current DDRX interfaces do not support QUAC,
future DRAM chips can be built (and their interface accordingly
speci�ed) to take advantage of the same fundamental QUAC
behavior to enable low-cost, high-throughput true random
number generation (which we describe next in Section 5) as
intended behavior.
5. QUAC-TRNG

QUAC-TRNG generates true random numbers at high-
throughput by repeatedly performing QUAC.

4

5.1. Generating Random Output From QUAC

Figure 5 depicts how a QUAC operation generates a random
output when the cells in rows R0 and R2 are initially charged
(VDD), and the cells in rows R1 and R3 are initially discharged
(0) in a DRAM segment.

R3

R2

R1

R0

0

VDD

2
VDD

2
VDD

2
VDD

2
VDD

Command:
Ti me: T0 T1 T2 T3 T4

ACT R0 PRE ACT R3

VDD

+ ? ~

Figure 5: Timeline of changes in a DRAM bitline’s state in a
DRAM segment during a QUAC operation. Dashed vertical
lines represent a state transition.

At T0, the bitline is precharged (VDD/2). At T1, we enable
wordline R0 by quickly issuing an ACT command to R0. We
interrupt the ACT command by issuing a PRE command at T2.
Meanwhile, the cell on R0 shares a portion of its charge with
the bitline, reducing its voltage level (< VDD). Before the PRE
command closes the row and precharges the bitline, we issue
another ACT command to R3 at T3. The last ACT command
interrupts the PRE command and enables wordlines R1, R2,
and R3 simultaneously, in addition to the already enabled R0.
Since QUAC opens four rows, all four cells on a DRAM bitline
contribute to the bitline voltage. Following QUAC, at T4, the
bitline ends up with a voltage level below reliable sensing
margins. Thus, it is sampled as a random value by the sense
ampli�er; in Figure 5, the single depicted bitline is randomly
sampled as VDD .

To explain QUAC’s true random number generation behav-
ior, we hypothesize that QUAC produces random values in
sense ampli�ers by forcing each sense ampli�er to attempt
to amplify a di�erential voltage that is well below its reliable
sensing margin (i.e., there is approximately no voltage dif-
ference between the sense ampli�er’s two terminals). Under
these conditions, the sense ampli�er fails to reliably develop
and non-deterministically settles to either logical high or low
based on thermal noise [21].2 To achieve this, we initialize
the four rows that will undergo QUAC with data patterns that
ensure opposite charge values in DRAM cells along the same
bitline. When charge sharing occurs amongst the four cells
following a QUAC operation, the bitline remains close to the
quiescent bitline voltage of VDD/2. Therefore, any data pat-
tern that programs the four cells with con�icting charge values
will su�ce.3

2We do not observe this behavior in every DRAM bitline within a DRAM
segment. We attribute this to the e�ects of process variation across di�erent
components in the DRAM array, e.g., the capacitance of DRAM bitlines, the
o�set of di�erential sense ampli�ers and the capacitance of DRAM cells.

3To analyze QUAC’s data pattern dependency, we exhaustively test QUAC
with 16 data patterns, as we describe in Section 6.1.

5.2. Mechanism
QUAC-TRNG leverages the random values in the sense am-

pli�ers generated by QUAC operations as its source of en-
tropy. QUAC-TRNG �rst performs a QUAC operation on a
high-entropy DRAM segment4 and generates random values
in the sense ampli�ers. QUAC-TRNG then uses the SHA-256
cryptographic hash [50] function to post-process the random
values in the sense ampli�ers to generate high-quality true
random numbers.

Figure 6 depicts a DRAM subarray’s logical organization
when used for QUAC-TRNG and the three-step procedure
of generating a 256-bit random number with QUAC-TRNG.
QUAC-TRNG reserves six rows in a DRAM subarray to ensure
that no other system component can access the reserved rows.
Four of these rows form a segment that is used to perform
QUAC. Two of them store all-0s and all-1s for initializing the
segment with low latency.

Row 0

DRAM Segment

DRAM Segment

Row 1

Row 2

Row 3

All ‘0’ Row

All ‘1’ Row

① Segment Initialization ② QUAC

Row 0

Row 1

Row 2

Row 3

DRAM Segment

③ Read Random Data

Memory Controller

256-bit
Random NumberSense Amps

256-Bit Entropy Blocks

Sense Amps

DRAM Segment

All ‘0’ Row

All ‘1’ Row

④ Post Processing

SHA-256

Sense Amps

Figure 6: QUAC-TRNG mechanism.
To generate a 256-bit random number, QUAC-TRNG �rst

selects a high-entropy DRAM segment and initializes the seg-
ment by performing four in-DRAM copy operations [53, 135]
from the two reserved rows to each row in the segment 1 . Sec-
ond 2 , it performs a QUAC operation on the segment to gener-
ate random data in the sense ampli�ers. Third 3 , the memory
controller reads a block of bits from the sense ampli�ers with
a total amount of 256 bits of Shannon entropy (Section 6.1.1).
Finally 4 , the memory controller post-processes this block
using the SHA-256 hash function to generate a 256-bit random
number with improved quality of randomness.
6. Real DRAM Chip Characterization
6.1. Randomness in QUAC Operations

We experimentally study the entropy characteristics of
QUAC operations across di�erent data patterns and DRAM
segments in real DRAM chips.
6.1.1. Experimental Methodology.To characterize the en-
tropy in random values resulting from QUAC operations, we
conduct experiments on 136 DRAM chips that come from 17
o�-the-shelf DDR4 modules (see Appendix A, Table 3).
Infrastructure. We use a modi�ed version of SoftMC [64]
that enables precise control over DDR4 command timings,
also used in [52, 91]. We test DDR4 modules (Figure 7-a) by
issuing DDR4 command sequences that we send to the FPGA

4A high-entropy segment is a DRAM segment where QUAC operations
generate many random values (i.e., with 1000s of bits of entropy) in the sense
ampli�ers, identi�ed through a one-time characterization e�ort, as described
in Section 6.1.2.

5

board (Figure 7-b) from the host machine through the PCIe
interface (Figure 7-c). During our experiments, we control the
temperature of DRAM chips on both sides of the module. To
do so, we vertically connect the module to the FPGA board and
heat the module as needed from both sides using rubber heaters
(Figure 7-a). To control the heaters, we use a temperature
controller (Figure 7-d) that performs a closed-loop PID control,
which keeps the temperature constant at±0.1 °C of the desired
temperature level (50 °C by default).

b. FPGA Board

a. DRAM Module

d. Temperature Controller
c. PCIe Host Interface

Figure 7: DDR4 SoftMC experimental setup.

Algorithm 1 describes the test procedure we use to extract
true random numbers using QUAC operations. Algorithm 1
consists of three steps: step (i) initializes the DRAM segment
with a data pattern (Line 2), step (ii) performs a QUAC oper-
ation on the DRAM segment (Lines 3-7), and step (iii) reads
back the random values in the row bu�er (Lines 9-10). To si-
multaneously enable all four rows in a segment, we activate
the �rst and the fourth rows in the segment (e.g., Row0 and
Row3) with two greatly violated timing parameters, tRAS , and
tRP . First, we issue the PRE command (Line 5) earlier than the
time delay (tRAS) needed for charge restoration to complete.
Second, we issue the second activation (Line 7) earlier than
the time delay (tRP), needed for bitlines to settle at Vdd/2. We
obey the DRAM timing parameters while reading from every
sense ampli�er in the DRAM segment.5

Algorithm 1: Testing for QUAC’s randomness
1 DRAM_QUAC_randomness_testing(data_pattern,

DRAM_segment,DRAM_bank):
2 write data_pattern into all rows in DRAM_segment
3 activate(DRAM_segment : Row_0)
4 wait(2.5ns) // violate tRAS

5 precharge(DRAM_bank)
6 wait(2.5ns) // violate tRP

7 activate(DRAM_segment : Row_3)
8 wait(tRCD)
9 foreach SA in DRAM_segment: // read each sense ampli�er

10 record the value on the SA

Shannon Entropy. Shannon entropy [141] quanti�es the
amount of information present in a signal. We use Shannon
entropy as a measure of the randomness in DRAM sense am-
pli�ers following QUAC operations. We calculate a sense am-
pli�er’s Shannon entropy as in Equation 1, where p(x1) is
the probability of observing a logical-0 value and p(x2) is the
probability of observing a logical-1 value in the sense ampli-
�er following QUAC operations. The total Shannon entropy
(i.e., entropy) of a bitstream can be interpreted as the e�ective
number of random bits within the bitstream.

H(x) = −
2∑

i=1
p(xi) log2 p(xi) (1)

5We repeat Algorithm 1 for every DRAM segment in a DRAM bank in all
DRAM modules.

6.1.2. Methodology to Measure Entropy in QUAC Op-
erations.We measure the entropy of the random bitstreams
generated in individual sense ampli�ers by performing QUAC
operations. We repeatedly perform QUAC (as shown in Algo-
rithm 1) 1000 times and measure the entropy of each sense-
ampli�er by evaluating Equation 1 for the 1000-bit bitstream
produced by each sense ampli�er. We repeat this analysis on
8K di�erent DRAM segments (32K DRAM rows) using 16 dif-
ferent data patterns. We refer to the entropy of the bitstreams
obtained from a sense ampli�er connected to a bitline in a
DRAM segment as that bitline’s entropy.
6.1.3. Data Pattern Dependence.We analyze how the data
patterns used in initializing DRAM segments a�ect the result
of QUAC operations. We calculate the entropy for each cache
block (i.e., 512 bitlines) in a DRAM module by aggregating
the entropy of all bitlines in the cache block. We de�ne two
metrics (i) average cache block entropy, and (ii) maximum cache
block entropy.6 We calculate the average cache block entropy as
the average entropy across all cache blocks in a DRAM module.
The maximum cache block entropy is the entropy of the cache
block with the highest entropy in a DRAM module. Figure 8
shows the average values of each of these metrics across all
17 modules we test. The error bars show the range (i.e., mini-
mum and maximum) of the values across all modules. A larger
entropy indicates more random behavior in DRAM sense am-
pli�ers. We omit the data patterns that result in insu�cient
entropy in sense ampli�ers following QUAC operations.

0

20

40

60

0

10

20

30

0100 0101 0110 0111 1000 1001 1010 1011

M
ax

im
um

 E
nt

ro
py

Av
er

ag
e

En
tr

op
y

Data Pattern

Average CB Entropy Maximum CB Entropy

Figure 8: Average (grey bars, left Y-axis) and maximum (orange
bars, right Y-axis) DRAM cache block entropies for di�erent
data patterns across 17 modules. The error bars show the range
of the average and the maximum DRAM cache block entropy
across all modules.

We make three observations from Figure 8. First, the aver-
age entropy varies across di�erent data patterns. The average
cache block entropy is the highest at 11.07 bits for the data pat-
tern “0111” whereas it is the lowest at 0.17 bits for data pattern
“1011”. Second, we observe that the “0111” and “1000” data
patterns lead to the highest entropy on average in all DRAM
modules we test. This indicates that randomness increases
when the �rst row QUAC activates (Row0) is initialized with
the inverted value of all other three rows (e.g., all-zeros in
Row0 and all-ones in the other three rows). This is because
the cells in the �rst row have more time to share their charge
with the bitlines as they are activated earlier than the other
three rows. We hypothesize the bitline voltage is more likely
to end up at a metastable level if all three later-activated rows
simultaneously try to pull the bitline voltage in the opposite
direction of the row that is activated �rst in QUAC operations.
Third, we observe that cache block entropy in QUAC opera-

6The theoretical maximum entropy for a single cache block is 512 bits
because each cache block is 512 bits (i.e., 64 bytes) wide.

6

tions can reach up to 53.0 bits with the “0100” data pattern.
We hypothesize that this is a result of a combination of design-
induced variation [101] and manufacturing process variation
across DRAM segments. For example, variation in DRAM cell
capacitance across DRAM segments may result in some DRAM
segments to favor a certain data pattern (e.g., “0100”), i.e., per-
forming QUAC on this segment keeps the bitline voltage below
reliable sensing thresholds when the rows are initialized with
that data pattern.
6.1.4. Spatial Distribution of Entropy.We study the spatial
distribution of entropy in QUAC operations across segments in
a DRAM bank. We calculate a segment’s entropy as the sum of
all bitline entropies in a DRAM segment. Figure 9 depicts how
a segment’s entropy (y-axis) varies across 8K DRAM segments
in a DRAM bank (x-axis) across 136 DRAM chips, initialized
with the data pattern that yields the largest average entropy
(“0111”). There are three curves in Figure 9. The red curve
shows the average segment entropy across all chips, with the
error bars showing the maximum and minimum entropy values
observed for any DRAM segment.7 Black (dotted) and blue
(dashed) curves provide representative samples of two main
entropy variation trends (M1 and M2, respectively, depicting
two selected DRAM modules) we observe across all chips.

Figure 9: Average DRAM segment entropy across 17 modules
(136 chips). The X-axis plots the DRAM segments and the Y-
axis shows the segment entropy. We plot the segment entropy
of two speci�c modules (M1 & M2) using black (dotted) and
blue (dashed) lines.

We make three observations from Figure 9. First, the DRAM
segment entropy behavior is di�erent across modules. For
example, the 640th segment (middle of the highlighted area on
the �gure) exhibits signi�cantly lower entropy compared to
nearby segments (i.e., leads to a local minimum) in module
M1, but it exhibits a signi�cantly higher entropy compared to
its neighboring segments (i.e., leads to a local maximum) in
module M2. Assuming the two modules’ circuit designs are
identical (since both modules are from the same manufacturer),
we can potentially attribute this di�erence between modules to
systematic process variation [111] and/or post-manufacturing
row repair, where erroneous DRAM rows are remapped on a
per-chip basis after manufacturing to improve yield [19, 41, 70,
75, 79, 80, 83, 84, 92, 101, 105, 122, 138, 144, 152]. Second, we
observe that the overall segment entropy distribution follows
a wave-like pattern. The segment entropy peaks and descends
repeatedly as segment id (x-axis) increases (i.e., as DRAM row
addresses increase) in the same DRAM bank. We hypothesize
that this spatial pattern results from either the e�ects of sys-
tematic process variation or the structure of the local DRAM

7The theoretical maximum entropy of a single segment is 64K bits because
there are 64K bitlines in each DRAM segment.

array. For example, a segment’s entropy could be related to
the segment’s distance from the sense ampli�ers. Third, a ma-
jority of modules experience a signi�cant increase in segment
entropy towards the 8000th segment, followed by a drop in
segment entropy towards the end (i.e., 8192nd segment) of the
DRAM bank. This could potentially be explained by systematic
process variation or the micro-architectural characteristics of
the DRAM bank. For example, the subarrays at the end of the
bank might be di�erently sized than the rest of the subarrays,
placing some segments further away from the sense ampli�ers.

We calculate a cache block’s entropy (cache block entropy)
as the sum of the entropy of all bitlines in that cache block.
We use the highest average-entropy data pattern (“0111”) to
initialize DRAM segments and �nd each cache block’s entropy
in the highest-entropy DRAM segment in each DRAM module.
Figure 10 plots the average value of each cache block’s entropy
in the highest-entropy DRAM segment, and the error bars
show the range (i.e., minimum and maximum) of the values
across all 17 modules. We observe that the cache block entropy
peaks around the middle of the DRAM segment and deterio-
rates towards the end of the DRAM segment. This indicates
that the bitlines in the higher-numbered cache blocks are less
random than the bitlines in the lower- or middle-numbered
cache blocks.

Figure 10: Average entropy of each cache block in the highest-
entropy segment in all modules. The error bars show the range
of the values across all modules.

We conclude from our analysis that the entropy provided by
QUAC operations is distributed non-uniformly across DRAM
segments and DRAM cache blocks. We hypothesize that the
entropy distribution could be related to the micro-architectural
characteristics of DRAM banks (e.g., distance of segments from
the sense ampli�ers), systematic variation in manufacturing
processes [111], or post-manufacturing row-repair.
6.2. True Random Bitlines in QUAC Operations

We conduct a SoftMC experiment to demonstrate that QUAC
operations, when performed repeatedly, generate random bit-
streams in DRAM sense ampli�ers. The SoftMC experiment
works in three steps: (i) initializes the DRAM segment with a
data pattern, (ii) performs a QUAC operation on the DRAM
segment to generate random values in the sense ampli�ers,
(iii) reads out the DRAM segment. We collect one bit from
each sense ampli�er in the DRAM segment with each iteration
of our experiment. We iterate one million times to collect 1 Mb
bitstreams from every sense ampli�er in the DRAM segment.
Our entropy analysis shows that the values produced by QUAC
operations on all sense ampli�ers are biased towards a binary
(logic-0 or logic-1) value (i.e., more likely to produce either one
of the binary values). We use post-processing methods (Von
Neumann Corrector [162] and SHA-256 [50]) to improve the
quality of random bitstreams generated by QUAC operations.

7

We apply the Von Neumann Corrector (VNC) [162] to all
bitstreams to remove bias and improve the quality of the ran-
dom number sequence. The VNC �rst splits all bits into groups
of two bits. Then it applies one of the three transformations:
(i) removes the group if both of the bits have the same value,
(ii) removes the group and inserts a logic-1 if the �rst bit in the
group is logic-0 and the second one is logic-1 (i.e., the generator
transitions from logic-0 to logic-1), or (iii) removes the group
and inserts a logic-0 otherwise. E.g., the bitstream “0010” after
post-processing using the VNC becomes “0”.

We use the NIST Statistical Test Suite (STS) [20] to validate
the randomness of the output of our TRNG. NIST STS formu-
lates several statistical tests to test a speci�c null hypothesis, H0,
which states that the number sequence under test is random.
The suite outputs a p-value for all of the statistical tests that it
runs on the random number sequence. We say that H0 holds
for a statistical test if it outputs a p-value greater than a chosen
level of signi�cance denoted as α. That is, if the p-value of a
test is greater than α, then the number sequence is random
according to that test. We choose α as 0.001 based on the sug-
gested level of signi�cance range ([0.01, 0.001]) in the NIST STS
speci�cation [20].

We collect bitstreams from every sense ampli�er (64K in
one DRAM segment) in a DRAM segment following QUAC
operations. We test 8K DRAM segments in every DRAM mod-
ule. We observe that 1 Mbit bitstreams collected from 22 sense
ampli�ers can pass all NIST STS tests.

Table 1 presents the average p-values for the NIST STS test
results on two types of bitstreams that pass all 15 tests: (i) the
output of the Von Neumann Corrector (“VNC”) and (ii) the
output of the post-processing step we describe in Section 5.2
(“SHA-256”). We conclude that QUAC generates number se-
quences that are indistinguishable from true random number
sequences. We discuss the randomness of post-processed re-
sults (SHA-256 column) in Section 7.1.

Table 1: NIST STS Randomness Test Results
NIST STS Test VNC∗ SHA-256

(p-value) (p-value)
monobit 0.430 0.500
frequency_within_block 0.408 0.528
runs 0.335 0.558
longest_run_ones_in_a_block 0.564 0.533
binary_matrix_rank 0.554 0.548
dft 0.538 0.364
non_overlapping_template_matching >0.999 0.488
overlapping_template_matching 0.513 0.410
maurers_universal 0.493 0.387
linear_complexity 0.483 0.559
serial 0.355 0.510
approximate_entropy 0.448 0.539
cumulative_sums 0.356 0.381
random_excursion 0.164 0.466
random_excursion_variant 0.116 0.510

∗VNC: Von Neumann Corrector

7. QUAC-TRNG Evaluation
We evaluate QUAC-TRNG using real DRAM chip experi-

ments and simulation studies to show that QUAC-TRNG (i) pro-
duces high-quality random bitstreams, and (ii) outperforms
prior DRAM-based TRNG proposals.
7.1. QUAC-TRNG Output Quality

To demonstrate that QUAC-TRNG produces high-quality
bitstreams of random values, we experimentally extract nine

bitstreams from three DDR4 modules (24 DRAM chips).8 Our
results show that the bitstreams pass all of the NIST STS tests.

We extract a single bitstream using �ve steps: we (i) initial-
ize the DRAM segment with the highest-entropy data pattern
(“0111”), (ii) perform a QUAC operation on the DRAM seg-
ment, (iii) read out the DRAM segment, (iv) split the DRAM
segment into blocks that each have 256 bits of entropy based
on our characterization of cache block entropy in Section 6.1.2,
and (v) input the 256-bit entropy blocks to the SHA-256 hash
function to obtain 256-bit random numbers.

We partition 1 Gb bitstreams obtained from each highest-
entropy DRAM segment into 1 Mb random number sequences
and test 1024 number sequences per DRAM segment using
NIST STS. We �nd that 99.28% of the sequences pass all NIST
STS tests. This pass rate is larger than the acceptable rate9

(98.84%) that NIST speci�es [20].
Table 1, column “SHA-256” shows the average p-value for

each test. We conclude that QUAC-TRNG generates high-
quality uncorrelated, random bitstreams.
7.2. QUAC-TRNG Throughput

We analytically model QUAC-TRNG’s throughput for a mod-
ule in terms of (i) the number of input blocks with 256 bits of en-
tropy in the highest-entropy segment (SIB: SHA Input Blocks)
and (ii) the overall latency of one QUAC operation (L). QUAC-
TRNG generates 256× SIB random bits per DRAM bank in
L ns, resulting in a throughput of (256× SIB)/(L× 10−9)
bits per second. SIB is calculated directly from the entropy
of the highest-entropy segment as bsegment_entropy/256c.
We calculate L by tightly scheduling the DRAM commands
required to (i) initialize four DRAM rows with data patterns,
(ii) perform QUAC, and (iii) read random values from the sense
ampli�ers into the memory controller.

QUAC-TRNG’s latency (L) is dominated by the time it takes
to initialize four DRAM rows in a DRAM segment. We apply
two optimizations to amortize the initialization overhead and
increase the peak throughput of QUAC-TRNG. First, we con-
currently execute QUAC operations across multiple banks by
exploiting bank-level parallelism. In particular, for DDR4, we
interleave across bank groups due to DDR4’s short ACT-to-
ACT (tRRD_S) timing constraint. Second, we use in-DRAM
copy operations to initialize DRAM segments at row granular-
ity by adopting ComputeDRAM’s [53] RowClone-based [135]
in-DRAM copy procedure in our DDR4 modules. Using in-
DRAM copy, we signi�cantly reduce the DRAM segment ini-
tialization latency.

Figure 11 shows QUAC-TRNG’s random number throughput
under three con�gurations: (i) One Bank, where we use a sin-
gle DRAM bank to generate random numbers, (ii) BGP (Bank
Group Parallelism), where we use four banks from di�erent
bank groups and overlap DRAM command latencies to fully
utilize the available DRAM bandwidth, and (iii) RC (RowClone)
+ BGP, where we initialize DRAM segments using in-DRAM
copy to alleviate the overheads of segment initialization and
use four banks from di�erent bank groups. We plot the aver-

8We test a total of nine bitstreams, each sized 1 Gb, obtained from three
DRAM modules to demonstrate that QUAC-TRNG can produce statistically
uncorrelated streams of random numbers while maintaining a reasonable
testing time.

9Based on the formula (1−α)±3
√
α(1− α)/k, where k is the sequence

population (1024) and α is the signi�cance level (0.005)

8

age, maximum, and minimum TRNG throughput QUAC-TRNG
provides across all DRAM modules.

0.49 0.75

3.44

0.77 1.18

5.41

0.35 0.54

2.46

0
1
2
3
4
5
6

One Bank BGP RC + BGP

TR
N

G
 T

hr
ou

gh
pu

t (
G

b/
s)

QUAC-TRNG Configuration

Average Maximum Minimum

One Bank BGP RC + BGP

Figure 11: QUAC-TRNG’s random number generation through-
put (per DRAM channel) under three (One Bank, BGP, RC +
BGP) con�gurations.

We observe that, on average, One Bank achieves 0.49 Gb/s,
BGP achieves 0.75 Gb/s, and RC + BGP achieves 3.44 Gb/s
random number throughput. The TRNG throughput of QUAC-
TRNG varies across modules as the maximum segment entropy
for each module varies. We conclude that QUAC-TRNG greatly
bene�ts from in-DRAM copy to achieve high true random
number generation throughput.
7.3. System Performance Study

To understand the maximum throughput that QUAC-TRNG
can provide without reducing the total o�-chip memory band-
width available to concurrently-running applications, we run
an experiment using memory traces from the SPEC2006 bench-
mark suite. We simulate a 3.2 GHz core with four DRAM chan-
nels of DDR4 memory using Ramulator [4, 94] to calculate
the time each memory channel spends idle. We inject DDR4
commands that are issued in QUAC-TRNG iterations into these
idle intervals. Figure 12 shows the random number generation
throughput QUAC-TRNG provides while each SPEC2006 work-
load is running.10 QUAC-TRNG generates random numbers at
10.2 Gb/s on average with a minimum (maximum) throughput
of 3.22 Gb/s (14.3 Gb/s). We observe that by fully utilizing the
idle intervals in the memory channels, QUAC-TRNG achieves
on average, 74.13% of the empirical average throughput deter-
mined in Section 7.2 (i.e., 13.76 Gb/s for 4 DRAM channels).

bzip
2 gccmcfmilc

zeusm
p

gromacs

cactu
sADM

leslie
3d
namd

gobmk
dealII

soplex
hmmer

sje
ng

GemsFDTD

libquantum
h264ref

lbm

omnetpp
asta

r wrf

sphinx3

xalancbmk

Average
0

5

10

15

TR
N

G
 T

hr
ou

gh
pu

t
(G

b/
s)

Figure 12: Available TRNG throughput during idle DRAM cy-
cles while running SPEC2006 workloads.

7.4. Comparison With Prior Work
We quantitatively compare high-throughput (> 100Mb/s)

DRAM-based TRNGs with QUAC-TRNG in this section. We
scale each prior work’s TRNG throughput and latency accord-
ing to the simulated system with 4 DRAM channels described
in Section 7.3. Table 2 presents a summary of our analysis,
including the low throughput (< 100Mb/s) TRNGs, which we
brie�y discuss in Section 10.

10We use four banks from di�erent bank groups in each channel.

Table 2: Summary of prior DRAM-TRNGs vs QUAC-TRNG
Proposal Entropy TRNG 256-bit TRNG

Source Throughput Latency

QUAC-TRNG Quadruple ACT 13.76 Gb/s 274 ns
Talukder+ [15] Precharge Failure 0.68 - 6.13 Gb/s 249 ns - 201 ns
D-RaNGe [88] Activation Failure 0.92 - 9.73 Gb/s 260 ns - 36 ns
D-PUF [150] Retention Failure 0.20 Mb/s 40 s
DRNG [47] DRAM Start-up N/A 700 µs
Keller+ [81] Retention Failure 0.025 Mb/s 40 s
Pyo+ [126] DRAM Cmd Schedule 2.17 Mb/s 112.5 µs

We rigorously compare QUAC-TRNG to two state-of-the-art
works that propose high-throughput DRAM-based TRNGs [15,
88]. We calculate both (i) the maximum random number gen-
eration throughput and (ii) the minimum latency for generat-
ing 256-bit random numbers for each of the high-throughput
TRNGs. To do so, we tightly schedule the sequence of DDR4
commands each TRNG needs to issue.
7.4.1. D-RaNGe [88].D-RaNGe generates random numbers
in DRAM by leveraging failures due to reading a cache block
before the row activation latency (tRCD) is satis�ed [88]. We
analyze the throughput of D-RaNGe under two con�gurations:
(i) D-RaNGe-Basic, where we evaluate D-RaNGe as proposed
in [88], and (ii) D-RaNGe-Enhanced, where we characterize the
entropy in tRCD failures in real DDR4 devices to estimate the
throughput of D-RaNGe combined with post-processing.
D-RaNGe-Basic. We calculate the throughput of D-RaNGe-
Basic by carefully scheduling the required DDR4 commands
to induce activation latency failures and read a cache block.
For our analysis, we augment D-RaNGe-Basic to exploit bank-
group-level parallelism in DDR4 devices. D-RaNGe observes
that there are as many as four TRNG cells per cache block.
We optimistically use the largest observed randomness (4 bits
in a cache block) in calculating D-RaNGe-Basic’s throughput.
We do not use in-DRAM copy operations to further improve
D-RaNGe-Basic’s throughput because D-RaNGe does not ben-
e�t from the highly parallel DRAM row initialization provided
by in-DRAM copy operations. D-RaNGe only needs to ini-
tialize one DRAM cache block, which can be done e�ciently
using DRAM write commands. Based on these observations
and assumptions, we estimate D-RaNGe-Basic’s maximum
throughput as 916.9 Mb/s and minimum latency for generating
256-bit random numbers as 260 ns.
D-RaNGe-Enhanced. To calculate D-RaNGe-Enhanced’s
TRNG throughput, we evaluate 136 real DDR4 chips from
17 DDR4 modules using SoftMC and �nd the average cache
block entropy provided by activation latency failures. For
each DRAM cache block in a DRAM bank, one iteration of
our SoftMC experiment: (i) initializes one DRAM row with
an all-0s data pattern (found to induce the most random be-
havior [88]) and (ii) accesses the DRAM row with reduced
tRCD . We repeat this experiment 1000 times and calculate
each cache block’s entropy. We �nd the maximum cache block
entropy for each DRAM module. We �nd the average of the
maximum cache block entropy across all DRAM modules to
calculate how many times D-RaNGe-Enhanced needs to access
DRAM with reduced tRCD to gather su�cient entropy (256-
bits). On average, D-RaNGe-Enhanced can harness 46.55 bits
of entropy from a DRAM cache block (out of 512 bits of theoret-
ical maximum entropy). We calculate that D-RaNGe-Enhanced
needs to perform 6 reduced tRCD accesses to generate a 256-
bit random number. For a fair comparison, we apply the same

9

post-processing (SHA-256) to D-RaNGe’s output as we do in
QUAC-TRNG. D-RaNGe with post-processing achieves up to
9.73 Gb/s throughput. D-RaNGe-Enhanced’s latency of gener-
ating a 256-bit random number is 36 ns, including the latency of
the SHA-256 hash function. We conclude that post-processing
using SHA-256 can signi�cantly improve D-RaNGe’s TRNG
throughput as it enables utilizing a larger portion of the cache
block for random number generation.
7.4.2. Talukder+ [15].Talukder et al. propose generating
random numbers in DRAM by leveraging bit failures due
to activating a DRAM row before bitlines are precharged to
VDD/2 [15]. The authors use SHA-256 to post-process bit-
streams that are read from DRAM. Talukder+’s mechanism (i)
induces precharge latency failures on multiple DRAM rows,
(ii) accumulates the random failures in DRAM cells, (iii) reads
these DRAM cells, (iv) post-processes them using the SHA-256
hash function. We augment their algorithm to exploit bank-
group-level parallelism in DDR4 devices. We use in-DRAM
copy to initialize rows before inducing precharge latency fail-
ures. We analyze the throughput of Talukder+’s mechanism
under two con�gurations: (i) Talukder+-Basic, where we esti-
mate the throughput of the mechanism based on the authors’
analysis on random cells, (ii) Talukder+-Enhanced, where we
characterize the entropy provided by precharge latency failures
in real DDR4 devices to estimate the throughput.
Talukder+-Basic. We calculate Talukder+-Basic’s TRNG
throughput using the results provided by the authors. The
authors report that, on average, there are 130.6 random cells
in a DRAM row. To accumulate 256-bits of entropy in input
blocks of the SHA-256 hash function, Talukder+’s mechanism
needs to read 3 DRAM rows. Based on this, the throughput
of Talukder+’s mechanism is 681.2 Mb/s, and the latency of
generating a 256-bit random number is 249 ns.
Talukder+-Enhanced. To calculate Talukder+-Enhanced’s
TRNG throughput, we evaluate 136 real DDR4 chips from 17
DDR4 modules using SoftMC and �nd the average DRAM row
entropy (i.e., the sum of the entropy of all bitlines in a DRAM
row) in precharge latency failures. We �nd the maximum row
entropy for each DRAM module. We �nd the average of the
maximum row entropy across all DRAM modules to calculate
how many SHA-256 input blocks with su�cient entropy (256-
bits) that Talukder+-Enhanced can extract from a high-entropy
DRAM row. We �nd that, on average, Talukder+-Enhanced
can harness 1023.64 bits of entropy from a high-entropy DRAM
row (out of 64K bits of theoretical maximum entropy) following
reduced tRP accesses. On average, Talukder+-Enhanced can
extract 3 SHA-256 input blocks with su�cient entropy from a
DRAM row. We calculate Talukder+-Enhanced’s throughput as
6.13 Gb/s. The latency of generating a 256-bit random number
for the Talukder+-Enhanced is 201 ns.

Figure 13 plots the average throughput of Talukder+-
Basic/Enhanced, D-RaNGe-Basic/Enhanced, and QUAC-TRNG.
We project the throughput of the evaluated mechanisms to
various DDR4 data transfer rates (MT/s).

We make two observations. First, D-RaNGe cannot make
use of the additional DRAM bandwidth because D-RaNGe
needs to frequently induce activation latency failures to sus-
tain the high throughput of random numbers. Therefore, D-
RaNGe’s peak throughput is bound by DRAM access latency
and does not scale with increasing DRAM external bandwidth.

46.41

22.83

11.63

2.54
1.090

10

20

30

40

50

60

2400 4800 7200 9600 12000

TR
N

G
 T

hr
ou

gh
pu

t (
G

b/
s)

DDR4 Transfer Rate (MT/s)
3600

Standard
DDR4

QUAC-T
RNG

Talukder+-Enh
anced

D-RaNGe-Enhanced

Talukder+Basic D-RaNGe-Basic

Figure 13: Throughput of DRAM-based TRNGs projected on
DDR4 transfer rate. We plot transfer rates beyond the DDR4
standard [76].

Second, Talukder+ and QUAC-TRNG can scale with increas-
ing DRAM transfer rate as they are bound by the DRAM
bandwidth. QUAC-TRNG outperforms the basic (enhanced)
versions of Talukder+ and D-RaNGe by 20.20× (2.24×) and
15.08× (1.41×), respectively, at DDR4 2400 MT/s. At a future
12 GT/s transfer rate, QUAC-TRNG outperforms enhanced con-
�gurations of Talukder+ and D-RaNGe in TRNG throughput
by 2.03× and 3.99×, respectively.

Although QUAC-TRNG has a higher latency than Talukder+
and D-RaNGe, this latency for generating true random num-
bers can be hidden by accumulating random numbers in a
bu�er. Commodity systems that employ TRNGs already im-
plement bu�ers to store random numbers [10]. QUAC-TRNG
can �ll this bu�er at a signi�cantly higher rate compared to
state-of-the-art DRAM TRNGs because QUAC-TRNG achieves
greater throughput.
8. Sensitivity Analysis
Temperature Dependence. We study the e�ects of tempera-
ture on the entropy of QUAC operations by recording bitline
entropies at 50◦C, 65◦C, and 85◦C on 40 real DRAM chips from
5 DRAM modules. We observe two trends: Trend-1, bitline
entropy increases with temperature (24 chips), and trend-2,
bitline entropy decreases with temperature (16 chips). We cal-
culate the maximum and the average segment entropy (sum of
all bitline entropies in that segment) independently for chips
that follow trend-1 and trend-2. Figure 14 plots the maximum
and average segment entropy at 50◦C, 65◦C, and 85◦C.

0
500
1000
1500
2000
2500
3000

Maximum Average Maximum Average

Trend 1 (24 Chips) Trend 2 (16 Chips)

Se
gm

en
t E

nt
ro

py
 (B

its
)

50°C 65°C 85°C

Maximum Average Maximum Average
Trend 1 (24 Chips) Trend 2 (16 Chips)

Figure 14: Maximum and average segment entropy at di�erent
temperatures.

We observe that the entropy in QUAC operations changes
with temperature. The maximum (average) segment entropy is
2019.6 (1442.0), 2389.8 (1569.5) and 2520.1 (1659.6) at 50◦C, 65◦C
and 85◦C for DRAM chips that follow trend-1, respectively. The
maximum (average) segment entropy is 2344.2 (1710.6), 1565.8
(1083.1) and 1293.5 (892.5) at 50◦C, 65◦C and 85◦C for DRAM
chips that follow trend-2, respectively. We conclude that a
QUAC-TRNG implementation needs to account for changes

10

in temperature while generating true random numbers, as
segment entropy changes with temperature.

To maintain the same amount of entropy (256-bits) in SHA-
256 input blocks at di�erent temperatures, the memory con-
troller stores a list of column address sets for non-overlapping
temperature ranges. This list is initialized by identifying high-
entropy DRAM segments at di�erent temperatures during a
one-time o�ine characterization step. QUAC-TRNG accesses
an element in the list depending on DRAM temperature (e.g.,
measured via temperature sensors [76]) and retrieves a set of
column addresses, where each address points to a contiguous
range of cache blocks in the DRAM segment with 256-bits of en-
tropy. QUAC-TRNG uses these sets to split the data read from
the high-entropy DRAM segment into SHA-256 input blocks.
In this way, QUAC-TRNG ensures that SHA-256 input blocks
always contain 256-bits of entropy at di�erent temperatures.
Time Dependence. To understand whether the quality of the
random numbers that QUAC-TRNG generates changes over
time, we study the entropy generated by QUAC operations at
the beginning and end of a 30-day period using 40 chips from
�ve modules. The average segment entropy for the highest-
entropy data pattern (“0111”, Section 6.1.2) does not change
signi�cantly. The di�erence between the average entropy of
8K segments at the beginning and at the end of the testing
period is on average (maximum, minimum) 2.4% (5.2%, 0.9%)
across �ve modules (see Appendix A, Table 3). We conclude
that the entropy generated by QUAC operations is not sig-
ni�cantly a�ected by time elapsed on the order of a month,
so the characterized segment entropy is valid for at least 30
days. Therefore, in the worst-case, QUAC-TRNG needs to
re-characterize segment entropy only once a month.
9. System Integration

We discuss how QUAC-TRNG can be integrated into a real
system. QUAC-TRNG generates random values by repeatedly
(i) performing QUAC on the highest-entropy (Section 6.1.4)
DRAM segments in four banks from four di�erent DRAM bank
groups, and (ii) post-processing the result of QUAC operations
using the SHA-256 hash function.
Post Processing. QUAC-TRNG uses a cryptographic hash
function to post-process random bitstreams produced by QUAC
operations. We choose to evaluate QUAC-TRNG using SHA-
256 as the post-processing function since SHA-256 is a se-
cure cryptographic hash function that can be implemented
e�ciently in hardware at low area and latency costs [3, 17,
131]. This makes SHA-256 well-suited to implementation in
the memory controller. We account for the costs of SHA-256
hardware in our evaluations based on values reported by re-
cent work [17]: 65 clock cycle latency (at 5.15 GHz), 19.7 Gb/s
throughput, and 0.001 mm2 area at a 7 nm process technology
node.
QUAC-TRNG User Application Interface. QUAC-TRNG
generates random numbers using QUAC operations. To per-
form QUAC operations, the memory controller needs to issue
an ACT→ PRE→ ACT command sequence with reduced
tRAS and tRP timing parameters. Upon receiving a request
for a random number, the memory controller checks if there
is available DRAM bandwidth to perform QUAC operations
and issues the command sequence with reduced timing pa-
rameters. This functionality can be implemented in a simple
state machine in the memory controller’s command schedul-

ing logic. To eliminate delays when an application requests
random numbers, the memory controller may periodically uti-
lize available DRAM bandwidth to generate and store random
numbers in a small bu�er in the memory controller, as pro-
posed in D-RaNGe [88]. In this way, an application’s request
for random numbers can be ful�lled immediately (up to the
bu�er size).

In order to use QUAC-TRNG in a real system, the designer
needs to expose an interface to user applications. There are
numerous possible ways to implement this interface, including
memory- or PCIe- mapped con�guration status registers, CPU
co-processor and I/O instructions, and specialized extensions
to the ISA. We leave it to the system designer to choose the
best approach that meets the design goals for their system.
Memory Overhead. QUAC-TRNG allocates a small number
of DRAM rows from one bank in four bank groups. We allocate
one DRAM segment (four rows) to perform QUAC operations
on and two DRAM rows to initialize the DRAM segment using
in-DRAM copy operations. To fully utilize the DDR4 band-
width, QUAC-TRNG simultaneously activates four segments in
four bank groups (one bank in each bank group) and reads data
from each bank in an interleaved manner. (Section 7.2). Thus,
we allocate four segments (for QUAC) and 8 DRAM rows (for
bulk initialization) across four banks in di�erent bank groups.
This amounts to 192 KB of total reserved space, which makes
up only 0.002% of the capacity of an 8 GB DDR4 module.
Area Overhead. QUAC-TRNG stores 4 DRAM row addresses
to point to the starting row addresses of the highest-entropy
DRAM segments and 8 DRAM row addresses to point to
the source operands for in-DRAM copy operations in four
DRAM banks from four di�erent bank groups. QUAC-TRNG
also stores 11 DRAM column addresses11 to indicate the non-
overlapping cache block ranges that contain 256-bits of entropy
each. These cache block ranges change according to system
temperature (Section 8). We assume there are as many as 10
distinct temperature ranges in calculating the area overhead.
In total, to store the row and column addresses, QUAC-TRNG
uses 1316 bits of storage. We model the required area for this
storage using CACTI [1] and �nd that it is 0.0003 mm2. With
the SHA-256 core, QUAC-TRNG requires 0.0014 mm2 area to
implement in 7nm process technology, which is only 0.04% the
chip area of a contemporary CPU designed at 7nm [11, 147].
10. Related Work

To our knowledge, this is the �rst work to (i) demonstrate
that quadruple row activation (QUAC) in DRAM chips leads
to random values by inducing metastability in DRAM sense
ampli�ers, (ii) exploit this phenomenon to design a new true
random number generator, QUAC-TRNG. We have already
extensively compared QUAC-TRNG to two state-of-the-art
high-throughput TRNG designs [15, 88] in Section 7.4. In this
section, we describe other related works.
10.1. Low-throughput DRAM-based TRNGs
Pyo et al. [126] (Table 2, Pyo+) generate random numbers
using the unpredictability in DRAM command schedule as the
entropy source. We calculate the peak theoretical throughput
for Pyo+ as 2.17 Mb/s from the number of CPU cycles (45000)
that it takes to obtain an 8-bit random number for the system

11To sustain the maximum 5.4 Gb/s TRNG throughput (Section 7.2) in
modules where there are 11 SHA-256 input blocks with 256-bits of entropy in
the highest-entropy segment.

11

we describe in Section 7.3. We �nd the latency of obtaining a
256-bit random number to be 112.5us.
Retention-based TRNGs [81, 150] (i) pause DRAM refresh
to accumulate a su�cient amount of retention failures [82]
that is used as the entropy source for true random number
generation, (ii) read the portion of the DRAM array that con-
tains the retention failures, and (iii) post-process the read data
using hash functions (e.g., SHA-256) to �nally obtain a random
number.

D-PUF [150] (Table 2, D-PUF) partitions the DRAM into 4
MiB large regions and pauses DRAM refresh for 40 seconds
for a region to accumulate a su�cient amount of retention
failures in DRAM. D-PUF uses the SHA-256 hash function
to post-process the data read from each region to generate a
256-bit random number. This incurs a minimum latency of
40 seconds to generate random numbers. We optimistically
calculate the throughput of D-PUF assuming a four-channel
system with 128 GiBs of DRAM. We also ignore the time it
takes to read out 128 GiBs of data. When 1% of available DRAM
(i.e., approximately 327 4 MiB large regions) is reserved for
retention failures, D-PUF’s TRNG throughput is 0.002 Mb/s.
Even when all DRAM (32K regions) is used, D-PUF can achieve
only 0.20 Mb/s peak throughput.

Keller+ [81] (Table 2, Keller+) partitions the DRAM into 1
MiB large regions and pauses DRAM refresh for 320 seconds.
Following an analysis similar to ours on D-PUF [150], we �nd
Keller+’s TRNG latency for a 256-bit random number to be
320 seconds and its TRNG throughput to be only 0.025 Mb/s,
assuming a four-channel system with 128 GiB DRAM fully
utilized for true random number generation.
Startup value-based TRNGs [47] (Table 2, DRNG) use the
startup values in DRAM cells that are accessed immediately
after a DRAM device is powered up. These TRNGs cannot
be used as a streaming true random number source as they
require a DRAM power cycle to generate random numbers. We
estimate the minimum latency of this category of TRNGs from
the time it takes to execute a DDR4 power-up initialization
sequence [143], which is 700 µs.

All these DRAM-based TRNGs provide very low random
number generation throughput and incur high latency. Low-
throughput TRNGs are unlikely to be useful in satisfying to-
day’s workloads with high throughput random number require-
ments (e.g., machine learning, cryptography, simulations [27,
37, 40, 42, 46, 61, 73, 85, 97, 108, 109, 112, 127, 132, 146, 161,
166, 169, 170]). QUAC-TRNG, on the other hand, can satisfy
the high-throughput requirements of these workloads.

10.2. Non-DRAM-based TRNGs That Require
Specialized Hardware

Many prior works design high-throughput TRNGs that are
based on specialized hardware [9, 21, 28, 29, 43, 56, 68, 69, 95,
104, 110, 121, 125, 145, 154, 163, 167]. Unfortunately, it is costly
to integrate these substrates into especially low-cost commod-
ity systems as well as future processing-in-memory systems
for true random number generation. Existing TRNGs in some
commodity systems [10, 12, 78] both (i) consume die area to
implement specialized circuitry (e.g., ring oscillators [117])
that harnesses entropy from physical phenomena and (ii) are
limited in throughput. For example, the TRNG in a recent
high-end AMD Zen3 processor can provide up to 3.18 Gb/s

throughput per core, assuming a 4 GHz clock rate [51], which
is only 23.11% of the throughput QUAC-TRNG can provide (on
a four-channel DDR4-2400 system).

In general, choosing a TRNG is a design-time decision that
requires balancing needs with costs. QUAC-TRNG provides
high-throughput true random number generation without in-
troducing dedicated hardware for TRNGs. Instead, QUAC-
TRNG leverages widely-used commodity DRAM as an entropy
source. Therefore, QUAC-TRNG o�ers a new design point that
can enable new applications that were previously infeasible
with alternative TRNGs, especially for systems where the costs
of on-chip TRNGs may be prohibitive (e.g., heavily constrained
embedded systems, processing-in-memory architectures). For
example, QUAC-TRNG would enable processing-in-memory
systems [62, 116, 137, 157] to execute security workloads as
it enables true random number generation directly within a
DRAM chip.

10.3. Multiple Row Activation In DRAM
Ambit [137] and ComputeDRAM [53]. Seshadri et

al. [134, 136, 137, 140] introduce the idea of triple row activa-
tion in DRAM, showing that this operation leads to a bitwise
majority function across the three activated rows. Compute-
DRAM [53] shows that a similar behavior can be observed in
real o�-the-shelf DRAM chips by carefully reducing the timing
parameters between consecutive DRAM commands. We build
on these works and introduce quadruple activation (QUAC),
which leads to a fundamentally di�erent phenomenon on real
o�-the-shelf DRAM chips, i.e., simultaneous activation of four
DRAM rows. We exploit this phenomenon to generate true
random numbers at high-throughput and low-latency.
CROW [65] and MCR-DRAM [39] propose a DRAM-

based substrate to simultaneously activate multiple DRAM
rows with the same data content to reduce access latency. Row-
Clone [135] enables consecutive activation of two DRAM rows
to copy data in DRAM. These mechanisms (i) require changes
to DRAM chips and (ii) do not generate random numbers.

11. Conclusion
We introduce QUAC-TRNG, a high-throughput and low-

latency DRAM-based TRNG that can be implemented in com-
modity systems at low cost. The key idea of QUAC-TRNG is
to induce metastability on many DRAM sense ampli�ers in
parallel by exploiting a phenomenon we observe, quadruple
row activation (QUAC), which simultaneously activates four
DRAM rows in real DRAM chips. Via a detailed characteri-
zation of 136 real DRAM chips, we show that QUAC-TRNG
produces random bitstreams that pass all 15 NIST STS tests,
and generates high-quality true random numbers at 3.44 Gb/s
throughput. We compare QUAC-TRNG against prior work
that we evaluate under two con�gurations, basic (as proposed)
and enhanced (throughput-optimized). QUAC-TRNG outper-
forms the state-of-the-art DRAM-based TRNG in throughput
by 15.08× and 1.41× for the basic and the enhanced con�g-
urations, respectively. QUAC-TRNG scales well with DRAM
bandwidth and outperforms the enhanced version of the state-
of-the-art by 2.03× at projected future DRAM transfer rates
(12 GT/s). We conclude that QUAC-TRNG reliably generates
true random numbers at high-throughput and low-latency in
real DRAM chips.

12

Acknowledgements

We thank the anonymous reviewers of ISCA 2021 for feed-
back and the SAFARI group members for feedback and the stim-
ulating intellectual environment they provide. We acknowl-
edge the generous gifts provided by our industrial partners:
Google, Huawei, Intel, Microsoft, and VMware.

References
[1] “CACTI: An integrated cache and memory access time, cycle time, area, leakage,

and dynamic power model,” https://www.hpl.hp.com/research/cacti/.
[2] “DRAM Power Model,” https://www.rambus.com/energy/.
[3] “Fast Hashing Cores,” https://www.heliontech.com/fast_hash.htm.
[4] “Ramulator Source Code,” https://github.com/CMU-SAFARI/ramulator.
[5] S. Aga et al., “Compute Caches,” in HPCA, 2017.
[6] J. Ahn et al., “A Scalable Processing-in-Memory Accelerator for Parallel Graph

Processing,” in ISCA, 2015.
[7] J. Ahn et al., “PIM-Enabled Instructions: a Low-overhead, Locality-aware Processing-

in-Memory Architecture,” in ISCA, 2015.
[8] B. Akin et al., “Data Reorganization in Memory Using 3D-Stacked DRAM,” in ISCA,

2015.
[9] T. Amaki et al., “An Oscillator-based True Random Number Generator with Process

and Temperature Tolerance,” in DAC, 2015.
[10] AMD, “AMD Random Number Generator,” https://www.amd.com/system/files/Tec

hDocs/amd-random-number-generator.pdf.
[11] AMD, “AMD Zen2 Microarchitecture,” https://en.wikichip.org/wiki/amd/microarch

itectures/zen_2.
[12] ARM, “ARM True Random Number Generator (TRNG) Technical Reference Manual

Revision r0p0,” https://developer.arm.com/documentation/100976/0000/Introducti
on/Features.

[13] O. O. Babarinsa and S. Idreos, “JAFAR: Near-Data Processing for Databases,” in
SIGMOD, 2015.

[14] V. Bagini and M. Bucci, “A Design of Reliable True Random Number Generator for
Cryptographic Applications,” in CHES, 1999.

[15] B. M. S. Bahar Talukder et al., “Exploiting DRAM Latency Variations for Generating
True Random Numbers,” in ICCE, 2019.

[16] M. Bakiri et al., “Survey on Hardware Implementation of Random Number Genera-
tors on FPGA: Theory and Experimental Analyses,” CSR, 2018.

[17] L. Baldanzi et al., “Cryptographically Secure Pseudo-Random Number Generator
IP-Core Based on SHA2 Algorithm,” Sensors, 2020.

[18] M. Barangi et al., “Straintronics-Based True Random Number Generator for High-
Speed and Energy-Limited Applications,” in IEEE Trans. Magn, 2016.

[19] A. Barenghi et al., “Software-Only Reverse Engineering of Physical DRAM Mappings
for Rowhammer Attacks,” in IVSW, 2018.

[20] L. Bassham et al., “A Statistical Test Suite for Random and Pseudorandom Number
Generators for Cryptographic Applications,” Special Publication (NIST SP), 2010.

[21] M. Bhargava et al., “Robust True Random Number Generator Using Hot-Carrier
Injection Balanced Metastable Sense Ampli�ers,” in HOST, 2015.

[22] A. Boroumand et al., “Mitigating Edge Machine Learning Inference Bottlenecks: An
Empirical Study on Accelerating Google Edge Models,” arXiv:2103.00768, 2021.

[23] A. Boroumand et al., “Google Workloads for Consumer Devices: Mitigating Data
Movement Bottlenecks,” in ASPLOS, 2018.

[24] A. Boroumand et al., “LazyPIM: An E�cient Cache Coherence Mechanism for
Processing-in-Memory,” in CAL, 2017.

[25] A. Boroumand et al., “Polynesia: Enabling e�ective hybrid transactional/analytical
databases with specialized hardware/software co-design,” arXiv:2103.00798, 2021.

[26] A. Boroumand et al., “CONDA: E�cient Cache Coherence Support for Near-Data
Accelerators,” in ISCA, 2019.

[27] R. Botha, “The Development of a Hardware Random Number Generator for Gamma-
ray Astronomy,” PhD Dissertation, North-West University, 2005.

[28] R. Brederlow et al., “A Low-power True Random Number Generator using Random
Telegraph Noise of Single Oxide-traps,” in ISSCC, 2006.

[29] M. Bucci et al., “A High-speed Oscillator-based Truly Random Number Source for
Cryptographic Applications on a Smart Card IC,” in TC, 2003.

[30] K. Chandrasekar et al., “Exploiting Expendable Process-Margins in DRAMs for
Run-Time Performance Optimization,” in DATE, 2014.

[31] K. K. Chang, “Understanding and Improving Latency of DRAM-Based Memory
Systems,” PhD Dissertation, Carnegie Mellon University, 2017.

[32] K. K. Chang et al., “Understanding Latency Variation in Modern DRAM Chips:
Experimental Characterization, Analysis, and Optimization,” in SIGMETRICS, 2016.

[33] K. K. Chang et al., “Improving DRAM Performance by Parallelizing Refreshes with
Accesses,” in HPCA, 2014.

[34] K. K. Chang et al., “Low-Cost Inter-Linked Subarrays (LISA): Enabling Fast Inter-
Subarray Data Movement in DRAM,” in HPCA, 2016.

[35] K. K. Chang et al., “Understanding Reduced-Voltage Operation in Modern DRAM De-
vices: Experimental Characterization, Analysis, and Mechanisms,” in SIGMETRICS,
2017.

[36] N. Chatterjee et al., “Architecting an Energy-E�cient DRAM System for GPUs,” in
HPCA, 2017.

[37] A. Cherkaoui et al., “A Very High Speed True Random Number Generator with
Entropy Assessment,” in CHES, 2013.

[38] P. Chi et al., “PRIME: A Novel Processing-in-Memory Architecture for Neural
Network Computation in ReRAM-Based Main Memory,” in ISCA, 2016.

[39] J. Choi et al., “Multiple Clone Row DRAM: A Low Latency and Area Optimized
DRAM,” in ISCA, 2015.

[40] P. J. Clarke et al., “Robust Gigahertz Fiber Quantum Key Distribution,” Applied
Physics Letters, 2011.

[41] L. Cojocar et al., “Are We Susceptible to Rowhammer? An End-to-End Methodology
for Cloud Providers,” in S&P, 2020.

[42] P. Davis and P. Rabinowitz, “Some Monte Carlo Experiments in Computing Multiple
Integrals,” Mathematical Tables and Other Aids to Computation, 1956.

[43] M. Degaldo-Restituto et al., “Nonlinear switched-current CMOS IC for random
signal generation,” Electronics Letters, 1993.

[44] F. Devaux, “The True Processing in Memory Accelerator,” in HCS, 2019.
[45] Donghyuk Lee, “Reducing DRAM Latency at Low Cost by Exploiting Heterogeneity,”

PhD Dissertation, Carnegie Mellon University, 2016.
[46] M. Drutarovsky and P. Galajda, “A Robust Chaos-based True Random Number Gen-

erator Embedded in Recon�gurable Switched-Capacitor Hardware,” in Radioelek-
tronika, 2007.

[47] C. Eckert et al., “DRNG: DRAM-based Random Number Generation Using its Startup
Value Behavior,” in MWSCAS, 2017.

[48] A. Farmahini-Farahani et al., “NDA: Near-DRAM Acceleration Architecture Lever-
aging Commodity DRAM Devices and Standard Memory Modules,” in HPCA, 2015.

[49] I. Fernandez et al., “NATSA: A Near-Data Processing Accelerator for Time Series
Analysis,” 2020.

[50] FIPS, PUB, “180-2: Secure hash standard (SHS),” US Department of Commerce, Na-
tional Institute of Standards and Technology (NIST), 2012.

[51] A. Fog, “Lists of instruction latencies, throughputs and micro-operation breakdowns
for Intel, AMD, and VIA CPUs,” https://www.agner.org/optimize/instruction_tables.
pdf.

[52] P. Frigo et al., “TRRespass: Exploiting the Many Sides of Target Row Refresh,” in
S&P, 2020.

[53] F. Gao et al., “ComputeDRAM: In-Memory Compute Using O�-the-Shelf DRAMs,”
in MICRO, 2019.

[54] M. Gao et al., “Practical Near-Data Processing for In-Memory Analytics Frameworks,”
in PACT, 2015.

[55] M. Gao and C. Kozyrakis, “HRL: E�cient and Flexible Recon�gurable Logic for
Near-Data Processing,” in HPCA, 2016.

[56] T. Gehring et al., “Ultra-Fast Real-Time Quantum Random Number Generator
with Correlated Measurement Outcomes and Rigorous Security Certi�cation,”
arXiv:1812.05377, 2020.

[57] S. Ghose et al., “Processing-in-Memory: A Workload-Driven Perspective,” IBM JRD,
2019.

[58] S. Ghose et al., “Enabling the Adoption of Processing-in-Memory: Challenges,
Mechanisms, Future Research Directions,” arXiv:1802.00320, 2018.

[59] C. Giannoula et al., “SynCron: E�cient Synchronization Support for Near-Data-
Processing Architectures,” in HPCA, 2021.

[60] J. Gómez-Luna et al., “Benchmarking a New Paradigm: Understanding a Modern
Processing-in-Memory Architecture,” arXiv:2105.03814, 2021.

[61] Z. Gutterman et al., “Analysis of the Linux Random Number Generator,” in SP, 2006.
[62] N. Hajinazar et al., “SIMDRAM: A Framework for Bit-Serial SIMD Processing Using

DRAM,” in ASPLOS, 2021.
[63] M. S. Hashemian et al., “A Robust Authentication Methodology Using Physically

Unclonable Functions in DRAM Arrays,” in DATE, 2015.
[64] H. Hassan et al., “SoftMC: A Flexible and Practical Open-Source Infrastructure for

Enabling Experimental DRAM Studies,” in HPCA, 2017.
[65] H. Hassan et al., “CROW: A Low-Cost Substrate for Improving DRAM Performance,

Energy E�ciency, and Reliability,” in ISCA, 2019.
[66] S. M. Hassan et al., “Near Data Processing: Impact and Optimization of 3D Memory

System Architecture on the Uncore,” in MEMSYS, 2015.
[67] D. E. Holcomb et al., “Initial SRAM State as a Fingerprint and Source of True Random

Numbers for RFID Tags,” in RFID, 2007.
[68] D. E. Holcomb et al., “Power-Up SRAM State as an Identifying Fingerprint and

Source of True Random Numbers,” ToC, 2009.
[69] J. Holleman et al., “A 3mu W CMOS True Random Number Generator with Adaptive

Floating-Gate O�set Cancellation,” JSSC, 2008.
[70] M. Horiguchi, “Redundancy Techniques for High-Density DRAMs,” in ISIS, 1997.
[71] K. Hsieh et al., “Transparent O�oading and Mapping (TOM): Enabling Programmer-

Transparent Near-Data Processing in GPU Systems,” in ISCA, 2016.
[72] K. Hsieh et al., “Accelerating Pointer Chasing in 3D-Stacked Memory: Challenges,

Mechanisms, Evaluation,” in ICCD, 2016.
[73] T. E. Hull and A. R. Dobell, “Random Number Generators,” SIAM Review, 1962.
[74] K. Humood et al., “DTRNG: Low Cost and Robust True Random Number Generator

Using DRAM Weak Write Scheme,” in ISCAS, 2021.
[75] K. Itoh, VLSI Memory Chip Design. Springer, 2001.
[76] JEDEC, “DDR4,” JEDEC Standard JESD79–4, 2012.
[77] JEDEC, “Graphics Double Data Rate (GDDR5) SGRAM Standard,” 2016.
[78] B. Jun and P. Kocher, “The Intel Random Number Generator (White Paper),” Cryp-

tography Research Inc., 1999.
[79] U. Kang et al., “Co-Architecting Controllers and DRAM to Enhance DRAM Process

Scaling,” in The Memory Forum, 2014.
[80] B. Keeth and R. Baker, DRAM Circuit Design: A Tutorial. Wiley, 2001.
[81] C. Keller et al., “Dynamic Memory-based Physically Unclonable Function for the

Generation of Unique Identi�ers and True Random Numbers,” in ISCAS, 2014.
[82] S. Khan et al., “The E�cacy of Error Mitigation Techniques for DRAM Retention

Failures: A Comparative Experimental Study,” in SIGMETRICS, 2014.

13

https://www.hpl.hp.com/research/cacti/
https://www.rambus.com/energy/
https://www.heliontech.com/fast_hash.htm
https://github.com/CMU-SAFARI/ramulator
https://www.amd.com/system/files/TechDocs/amd-random-number-generator.pdf
https://www.amd.com/system/files/TechDocs/amd-random-number-generator.pdf
https://en.wikichip.org/wiki/amd/microarchitectures/zen_2
https://en.wikichip.org/wiki/amd/microarchitectures/zen_2
https://developer.arm.com/documentation/100976/0000/Introduction/Features
https://developer.arm.com/documentation/100976/0000/Introduction/Features
https://www.agner.org/optimize/instruction_tables.pdf
https://www.agner.org/optimize/instruction_tables.pdf

[83] S. Khan et al., “PARBOR: An E�cient System-Level Technique to Detect Data-
Dependent Failures in DRAM,” in DSN, 2016.

[84] S. Khan et al., “Detecting and Mitigating Data-Dependent DRAM Failures by Ex-
ploiting Current Memory Content,” in MICRO, 2017.

[85] J. Kim et al., “Nano-Intrinsic True Random Number Generation: A Device to Data
Study,” IEEE TCAS, 2019.

[86] J. S. Kim, “Improving DRAM Performance, Security, and Reliability by Understand-
ing and Exploiting DRAM Timing Parameter Margins,” PhD Dissertation, Carnegie
Mellon University, 2020.

[87] J. S. Kim et al., “The DRAM Latency PUF: Quickly Evaluating Physical Unclonable
Functions by Exploiting the Latency-Reliability Tradeo� in Modern Commodity
DRAM Devices,” in HPCA, 2018.

[88] J. S. Kim et al., “D-RaNGe: Using Commodity DRAM Devices to Generate True
Random Numbers with Low Latency and High Throughput,” in HPCA, 2019.

[89] J. S. Kim et al., “GRIM-Filter: Fast Seed Location Filtering in DNA Read Mapping
Using Processing-in-memory Technologies,” BMC Genomics, 2018.

[90] J. S. Kim et al., “Solar-DRAM: Reducing DRAM Access Latency by Exploiting the
Variation in Local Bitlines,” in ICCD, 2018.

[91] J. S. Kim et al., “Revisiting RowHammer: An Experimental Analysis of Modern
DRAM Devices and Mitigation Techniques,” in ISCA, 2020.

[92] Y. Kim et al., “Flipping Bits in Memory Without Accessing Them: An Experimental
Study of DRAM Disturbance Errors,” in ISCA, 2014.

[93] Y. Kim et al., “A Case for Exploiting Subarray-level Parallelism (SALP) in DRAM,”
in ISCA, 2012.

[94] Y. Kim et al., “Ramulator: A Fast and Extensible DRAM Simulator,” in CAL, 2016.
[95] D. Kinniment and E. Chester, “Design of an On-chip Random Number Generator

using Metastability,” in ESSCIRC, 2002.
[96] Ç. K. Koç, “About Cryptographic Engineering,” in Cryptographic Engineering, 2009.
[97] S. H. Kwok and E. Y. Lam, “FPGA-based High-speed True Random Number Generator

for Cryptographic Applications,” in TENCON, 2006.
[98] Y.-C. Kwon et al., “25.4 A 20nm 6GB Function-In-Memory DRAM, Based on HBM2

with a 1.2 TFLOPS Programmable Computing Unit Using Bank-Level Parallelism,
for Machine Learning Applications,” in ISSCC, 2021.

[99] D. Lee, “Reducing DRAM Latency at Low Cost by Exploiting Heterogeneity,” PhD
Dissertation, Carnegie Mellon University, 2016.

[100] D. Lee et al., “Simultaneous Multi-Layer Access: Improving 3D-Stacked Memory
Bandwidth at Low Cost,” in TACO, 2016.

[101] D. Lee et al., “Design-Induced Latency Variation in Modern DRAM Chips: Charac-
terization, Analysis, and Latency Reduction Mechanisms,” in SIGMETRICS, 2017.

[102] D. Lee et al., “Adaptive-Latency DRAM: Optimizing DRAM Timing for the Common-
Case,” in HPCA, 2015.

[103] S. Li et al., “Pinatubo: A Processing-in-Memory Architecture for Bulk Bitwise
Operations in Emerging Non-Volatile Memories,” in DAC, 2016.

[104] Z. Limeng et al., “640-Gbit/s Fast Physical Random Number Generation Using a
Broadband Chaotic Semiconductor Laser,” Scienti�c Reports, 2017.

[105] J. Liu et al., “An Experimental Study of Data Retention Behavior in Modern DRAM
Devices: Implications for Retention Time Pro�ling Mechanisms,” in ISCA, 2013.

[106] J. Liu et al., “RAIDR: Retention-Aware Intelligent DRAM Refresh,” in ISCA, 2012.
[107] Z. Liu et al., “Concurrent Data Structures for Near-Memory Computing,” in SPAA,

2017.
[108] X. Lu et al., “FPGA Based Digital Phase-coding Quantum Key Distribution System,”

Science China Physics, Mechanics & Astronomy, 2015.
[109] X. Ma et al., “Quantum Random Number Generation,” Quantum Inf., 2016.
[110] S. K. Mathew et al., “2.4 Gbps, 7 mW All-digital PVT-variation Tolerant True Random

Number Generator for 45 nm CMOS High-performance Microprocessors,” in JSSC,
2012.

[111] V. Mehrotra, “Modeling the E�ects of Systematic Process Variation of Circuit Per-
formance,” PhD Dissertation, Massachusetts Institute of Technology, 2001.

[112] Y. Miché et al., “Machine Learning Techniques based on Random Projections,” in
ESANN, 2010.

[113] A. Morad et al., “GP-SIMD Processing-in-Memory,” in TACO, 2015.
[114] O. Mutlu, “Memory Scaling: A Systems Architecture Perspective,” in IMW, 2013.
[115] O. Mutlu et al., “Processing Data Where it Makes Sense: Enabling In-Memory

Computation,” Microprocessors and Microsystems, 2019.
[116] O. Mutlu et al., “A Modern Primer on Processing in Memory,” arXiv:2012.03112,

2020.
[117] L. Ning et al., “Design and Validation of High Speed True Random Number Genera-

tors Based on Prime-length Ring Oscillators,” The Journal of China Universities of
Posts and Telecommunications, 2015.

[118] G. F. Oliveira et al., “DAMOV: A New Methodology and Benchmark Suite for
Evaluating Data Movement Bottlenecks,” arXiv:2105.03725, 2021.

[119] L. Orosa et al., “Dataplant: Enhancing system security with low-cost in-dram value
generation primitives,” arXiv:1902.07344, 2019.

[120] L. Orosa et al., “CODIC: A Low-cost Substrate for Enabling Custom In-DRAM
Functionalities and Optimizations,” in ISCA, 2021.

[121] F. Pareschi et al., “A Fast Chaos-based True Random Number Generator for Crypto-
graphic Applications,” in ESSCIRC, 2006.

[122] M. Patel et al., “Bit-Exact ECC Recovery (BEER): Determining DRAM On-Die ECC
Functions by Exploiting DRAM Data Retention Characteristics,” in MICRO, 2020.

[123] M. Patel et al., “The Reach Pro�ler (REAPER): Enabling the Mitigation of DRAM
Retention Failures via Pro�ling at Aggressive Conditions,” in ISCA, 2017.

[124] A. Pattnaik et al., “Scheduling Techniques for GPU Architectures with Processing-
in-Memory Capabilities,” in PACT, 2016.

[125] C. S. Petrie and J. A. Connelly, “A Noise-based IC Random Number Generator for
Applications in Cryptography,” in Trans. Circuits Syst. I, 2000.

[126] C. Pyo et al., “DRAM as Source of Randomness,” in IET, 2009.
[127] Quintessence Labs, “Random Number Generators White Paper,” 2015.
[128] M. K. Qureshi et al., “AVATAR: A Variable-Retention-Time (VRT) Aware Refresh for

DRAM Systems,” in DSN, 2015.
[129] R. Rivest, “The MD5 Message-Digest Algorithm,” in RFC, 1992.
[130] A. Röck, “Pseudorandom Number Generators for Cryptographic Applications,” Mas-

ter’s thesis, Paris-Lodron-Universität Salzburg, 2005.
[131] A. Satoh and T. Inoue, “ASIC Hardware Focused Comparison for Hash Functions

MD5, RIPEMD-160, and SHS,” in ITCC, 2005.
[132] W. F. Schmidt et al., “Feedforward Neural Networks with Random Weights,” in ICPR,

1992.
[133] V. Seshadri, “Simple DRAM and Virtual Memory Abstractions to Enable Highly

E�cient Memory Systems,” PhD Dissertation, Carnegie Mellon University, 2016.
[134] V. Seshadri et al., “Fast Bulk Bitwise AND and OR in DRAM,” IEEE CAL, 2015.
[135] V. Seshadri et al., “RowClone: Fast and Energy-E�cient In-DRAM Bulk Data Copy

and Initialization,” in MICRO, 2013.
[136] V. Seshadri et al., “Buddy-RAM: Improving the Performance and E�ciency of Bulk

Bitwise Operations Using DRAM,” arXiv:1611.09988, 2016.
[137] V. Seshadri et al., “Ambit: In-Memory Accelerator for Bulk Bitwise Operations Using

Commodity DRAM Technology,” in MICRO, 2017.
[138] V. Seshadri et al., “Gather-Scatter DRAM: In-DRAM Address Translation to Improve

the Spatial Locality of Non-Unit Strided Accesses,” in MICRO, 2015.
[139] V. Seshadri and O. Mutlu, “Simple Operations in Memory to Reduce Data Movement,”

in Advances in Computers, 2017.
[140] V. Seshadri and O. Mutlu, “In-DRAM Bulk Bitwise Execution Engine,”

arXiv:1905.09822, 2020.
[141] C. E. Shannon, “A Mathematical Theory of Communication,” Bell System Technical

Journal, 1948.
[142] G. Singh et al., “NERO: A Near High-Bandwidth Memory Stencil Accelerator for

Weather Prediction Modeling,” in FPL, 2020.
[143] SK Hynix, “DDR4 SDRAM Device Operation.”
[144] R. T. Smith et al., “Laser Programmable Redundancy and Yield Improvement in a

64K DRAM,” JSSC, 1981.
[145] A. Stefanov et al., “Optical Quantum Random Number Generator,” in J. Mod. Opt,

2000.
[146] M. Stipčević and Ç. K. Koç, “True Random Number Generators,” in Open Problems

in Mathematics and Computational Science, 2014.
[147] D. Suggs et al., “The AMD “Zen 2” Processor,” Hot Chips, 2020.
[148] Z. Sura et al., “Data Access Optimization in a Processing-in-Memory System,” in CF,

2015.
[149] S. Sutar et al., “D-PUF: An Intrinsically Recon�gurable DRAM PUF for Device

Authentication and Random Number Generation,” in TECS, 2018.
[150] S. Sutar et al., “D-PUF: An Intrinsically Recon�gurable DRAM PUF for Device

Authentication in Embedded Systems,” in CASES, 2016.
[151] S. Tao and E. Dubrova, “TVL-TRNG: Sub-Microwatt True Random Number Genera-

tor Exploiting Metastability in Ternary Valued Latches,” in ISMVL, 2017.
[152] A. Tatar et al., “Defeating Software Mitigations Against Rowhammer: A Surgical

Precision Hammer,” in RAID, 2018.
[153] F. Tehranipoor et al., “Robust Hardware True Random Number Generators using

DRAM Remanence E�ects,” in HOST, 2016.
[154] C. Tokunaga et al., “True Random Number Generator with a Metastability-based

Quality Control,” in JSSC, 2008.
[155] A. N. Udipi et al., “Rethinking DRAM Design and Organization for Energy-

Constrained Multi-Cores,” in ISCA, 2010.
[156] K. Ugajin et al., “Real-time fast physical random number generator with a photonic

integrated circuit,” Optics Express, 2017.
[157] UPMEM, “Introduction to UPMEM PIM. Processing-in-memory (PIM) on DRAM

accelerator (White Paper),” 2018.
[158] V. van der Leest et al., “E�cient Implementation of True Random Number Generator

Based on SRAM PUFs,” in Cryptography and Security: From Theory to Applications,
2012.

[159] R. K. Venkatesan et al., “Retention-aware Placement in DRAM (RAPID): Software
Methods for Quasi-non-volatile DRAM,” in HPCA, 2006.

[160] P. Vincent et al., “Stacked Denoising Autoencoders: Learning Useful Representations
in a Deep Network with a Local Denoising Criterion,” JMLR, 2010.

[161] V. von Kaenel and T. Takayanagi, “Dual True Random Number Generators for
Cryptographic Applications Embedded on a 200 Million Device Dual CPU SOC,” in
CICC, 2007.

[162] J. von Neumann, “Various Techniques Used in Connection with Random Digits,” in
Monte Carlo Method, ser. NBS Applied Mathematics Series, 1951.

[163] X. Wang et al., “10-Gbps True Random Number Generator Accomplished in ASIC,”
in RT, 2016.

[164] Y. Wang et al., “FIGARO: Improving System Performance via Fine-Grained In-DRAM
Data Relocation and Caching,” in MICRO, 2020.

[165] Y. Wang et al., “Theory and Implementation of a Very High Throughput True
Random Number Generator in Field Programmable Gate Array,” RSI, 2016.

[166] D. Whitley, “A Genetic Algorithm Tutorial,” Statistics and Computing, 1998.
[167] K. Yang et al., “An All-digital Edge Racing True Random Number Generator Robust

Against PVT Variations,” in JSSC, 2016.
[168] D. Zhang et al., “TOP-PIM: Throughput-Oriented Programmable Processing in

Memory,” in HPDC, 2014.
[169] L. Zhang and P. Suganthan, “A Survey of Randomized Algorithms for Training

Neural Networks,” Information Sciences, 2016.
[170] T. Zhang et al., “High-speed True Random Number Generation Based on Paired

Memristors for Security Electronics,” Nanotechnology, 2017.

14

A. Appendix
Table 3: Sample population of 17 DDR4 modules

Module Module Identi�er Chip Identi�er Freq.
(MT/s)

Organization Segment Entropy

Size
(GB) Chips Pins Avg. Max.†

Avg.
(after 30 days)

M1 Unknown H5AN4G8NAFR-TFC 2133 4 8 x8 1688.1 2247.4 –
M2 Unknown Unknown 2133 4 8 x8 1180.4 1406.1 –
M3 Unknown H5AN4G8NAFR-TFC 2133 4 8 x8 1205.0 1858.3 1192.9
M4 76TT21NUS1R8-4G H5AN4G8NAFR-TFC 2133 4 8 x8 1608.1 2406.5 1588.0
M5 Unknown T4D5128HT-21 2133 4 8 x8 1618.2 2121.6 –
M6 TLRD44G2666HC18F-SBK H5AN4G8NMFR-VKC 2666 4 8 x8 1211.5 1444.6 –
M7 TLRD44G2666HC18F-SBK H5AN4G8NMFR-VKC 2666 4 8 x8 1177.7 1404.4 –
M8 TLRD44G2666HC18F-SBK H5AN4G8NMFR-VKC 2666 4 8 x8 1332.9 1600.9 1407.0
M9 TLRD44G2666HC18F-SBK H5AN4G8NMFR-VKC 2666 4 8 x8 1137.1 1370.9 –
M10 TLRD44G2666HC18F-SBK H5AN4G8NMFR-VKC 2666 4 8 x8 1208.5 1473.2 1251.8
M11 TLRD44G2666HC18F-SBK H5AN4G8NMFR-VKC 2666 4 8 x8 1176.0 1382.9 1165.1
M12 TLRD44G2666HC18F-SBK H5AN4G8NMFR-VKC 2666 4 8 x8 1485.0 1740.6 –
M13 KSM32RD8/16HDR H5AN4G8NAFA-UHC 2400 4 8 x8 1853.5 2849.6 –
M14 F4-2400C17S-8GNT H5AN4G8NMFR-UHC 2400 8 8 x8 1369.3 1942.2 –
M15 F4-2400C17S-8GNT H5AN4G8NMFR-UHC 3200 8 8 x8 1545.8 2147.2 –
M16 KSM32RD8/16HDR H5AN8G8NDJR-XNC 3200 16 8 x8 1634.4 1944.6 –
M17 KSM32RD8/16HDR H5AN8G8NDJR-XNC 3200 16 8 x8 1664.7 2016.6 –

†The maximum possible entropy in a DRAM segment is 64K (65,536) bits.

15

	Introduction
	Background
	DRAM Structure and Organization
	True Random Number Generators

	Motivation and Goal
	Quadruple Activation
	Hierarchical Wordlines
	Hypothetical Row Decoder
	Future QUAC Interfaces

	QUAC-TRNG
	Generating Random Output From QUAC
	Mechanism

	Real DRAM Chip Characterization
	Randomness in QUAC Operations
	Experimental Methodology
	Methodology to Measure Entropy in QUAC Operations
	Data Pattern Dependence
	Spatial Distribution of Entropy

	True Random Bitlines in QUAC Operations

	QUAC-TRNG Evaluation
	QUAC-TRNG Output Quality
	QUAC-TRNG Throughput
	System Performance Study
	Comparison With Prior Work
	D-RaNGe kim2019drange
	Talukder+ talukder2019exploiting

	Sensitivity Analysis
	System Integration
	Related Work
	Low-throughput DRAM-based TRNGs
	Non-DRAM-based TRNGs That RequireSpecialized Hardware
	Multiple Row Activation In DRAM

	Conclusion

