QUAC-TRNG

High-Throughput True Random Number Generation Using Quadruple Row Activation in Real DRAM Chips

Ataberk Olgun

Minesh Patel A. Giray Yağlıkçı Haocong Luo Jeremie S. Kim F. Nisa Bostancı Nandita Vijaykumar Oğuz Ergin Onur Mutlu

Executive Summary

- <u>Motivation</u>: DRAM-based true random number generators (TRNGs) provide true random numbers at low cost on a wide range of computing systems
- **<u>Problem</u>**: Prior DRAM-based TRNGs are slow:
 - 1. Based on fundamentally slow processes \rightarrow high latency
 - 2. Cannot effectively harness entropy from DRAM rows \rightarrow low throughput
- <u>Goal</u>: Develop a high-throughput and low-latency TRNG that uses commodity DRAM devices
- <u>Key Observation</u>: Carefully engineered sequence of DRAM commands can activate four DRAM rows → QUadruple ACtivation (QUAC)
- <u>Key Idea</u>: Use QUAC to activate DRAM rows that are initialized with **conflicting data** (e.g., two '1's and two '0's) to generate random values
- **QUAC-TRNG:** DRAM-based TRNG that generates true random numbers at **high-throughput** and **low-latency** by **repeatedly performing QUAC operations**
- **<u>Results</u>**: We evaluate QUAC-TRNG using **136** real DDR4 chips
 - 1. **5.4 Gb/s** maximum (**3.4 Gb/s** average) TRNG throughput per DRAM channel
 - 2. Outperforms existing DRAM-based TRNGs by 15.08x (base), and 1.41x (enhanced)
 - 3. QUAC-TRNG has low TRNG latency: **256-bit RN** in **274 ns**
 - 4. QUAC-TRNG passes **all 15** NIST randomness tests

SAFARI @kasırga

Use Cases of True Random Numbers

High-quality true random numbers are critical to many applications

True random numbers can **only** be obtained by sampling random physical processes

Not all computing systems are equipped with TRNG hardware (e.g., dedicated circuitry) SAFARI ©kasirga

DRAM-Based TRNGs

DRAM is ubiquitous in modern computing platforms

- DRAM-based TRNGs enable low-cost and high-throughput true random number generation within DRAM
- **Requires no specialized hardware: Benefits constrained systems**
- **Open application space:** Provides high-throughput TRNG
- **Processing-in-Memory (PIM)** systems perform computation directly within memory
- Avoid inefficient off-chip data movement

DRAM-based TRNGs

- Enable PIM workloads to sample true random numbers directly within the memory chip

[Samsung]

Avoid communication to possible off-chip TRNG sources

kasırga SAFARI (

Motivation and Goal

Prior DRAM-based TRNGs are slow, these TRNGs:

- 1. Are based on fundamentally slow physical processes
 - DRAM retention-based TRNGs
 - DRAM startup value-based TRNGs
- 2. Cannot effectively harness entropy from DRAM rows
 - DRAM timing failure-based TRNGs

Goal: Develop a high-throughput and low-latency TRNG that can be implemented using commodity DRAM devices

Key Observation

QUadruple **AC**tivation (**QUAC**): Carefully-engineered DRAM commands can activate four DRAM rows in real chips

SAFARI Økasırga

Using QUAC to Generate Random Values

Use QUAC to activate DRAM rows that are initialized with conflicting data (e.g., two '1's and two '0's) to generate random values

QUAC-TRNG

Experimental Methodology

Experimentally study QUAC and QUAC-TRNG using 136 real DDR4 chips

- Spatial distribution of entropy
- Data pattern dependency of entropy

DDR4 SoftMC → DRAM Testing Infrastructure

SAFARI Ckasirga [Hassan+HPCA'17] https://github.com/CMU-SAFARI/SoftMC 8

Key Results

- **5.4 Gb/s TRNG throughput (3.44 Gb/s on average) per channel**
- Outperform state-of-the-art base by **15.08x** and enhanced by **1.41x**
- Low latency: Generates a 256-bit random number in 274 ns

Passes all 15 standard NIST randomness tests

Negligible area cost: 0.04% of a contemporary CPU
Negligible memory overhead: 0.002% of an 8 GiB DRAM module

- Entropy changes with temperature
- Entropy remains stable for at least up to a month

SAFARI @kasırga

QUAC-TRNG

High-Throughput True Random Number Generation Using Quadruple Row Activation in Real DRAM Chips

Ataberk Olgun

Minesh Patel A. Giray Yağlıkçı Haocong Luo Jeremie S. Kim F. Nisa Bostancı Nandita Vijaykumar Oğuz Ergin Onur Mutlu

