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DRAMCPU Core DRAM Controller

Error Correction Codes (ECCs)

•Key idea: add metadata that allows the memory 
controller to reconstruct corrupt data on a bit flip
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•More metadata allows correcting more errors



Three Types of DRAM Systems
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Executive Summary

Problem: DRAM on-die ECC complicates third-party reliability studies

• Proprietary design obfuscates raw bit errors in an unpredictable way

• Interferes with (1) design, (2) test & validation, and (3) characterization

Goal: understand exactly how on-die ECC obfuscates errors

Contributions:

1. BEER: new testing methodology that determines a DRAM chip’s unique 
on-die ECC function (i.e., its parity-check matrix)

• Exploits ECC-function-specific uncorrectable error patterns

• Requires no hardware support, inside knowledge, or metadata access

2. BEEP: new error profiling methodology that infers the raw bit error 
locations of error-prone cells from the observable uncorrectable errors

BEER Evaluations:

• Apply BEER to 80 real LPDDR4 chips from 3 major DRAM manufacturers

• Show correctness in simulation for 115,300 codes (4-247b ECC words)

We hope BEER and BEEP enable valuable studies in the future
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Talk Outline

Challenges Caused by Unknown On-Die ECCs

BEER: Determining the On-Die ECC Function

Evaluating BEER in Experiment and Simulation

BEEP and Other Practical Use Cases for BEER
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Third-Party DRAM Users

7

Need to understand 

a DRAM chip’s reliability characteristics

Minimum operating timings?Aggregate failure rates?

‘Weak’ cell locations?

Inter-chip variation?

Statistical error properties?

Temperature dependence?

System Architects
Design Error Mitigations

Research Scientists
Error-Characterization

Test Engineers
Third-Party Testing



Third-Party DRAM Users

8

Need to understand 

a DRAM chip’s reliability characteristics

Minimum operating timings?Aggregate failure rates?

‘Weak’ cell locations?

Inter-chip variation?

Statistical error properties?

Temperature dependence?

System Architects
Design Error Mitigations

Research Scientists
Error-Characterization

Test Engineers
Third-Party TestingBut how do we study 

DRAM reliability characteristics?



Testing and Error Characterization
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A Typical DRAM On-Die ECC Design

•128-bit single-error correcting (SEC) Hamming code

Data

Store

Chip

I/O

ECC Encoder

ECC Decoder

128

128 128+8

128+8

External 

DRAM Bus

DRAM Chip

Fully contained 
within the chip

Invisible outside
the DRAM chip
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A Typical DRAM On-Die ECC Design

Data

Store

Chip

I/O

ECC Encoder

ECC Decoder

128

128 128+8

128+8

External 

DRAM Bus

DRAM Chip

•Many ways to implement a 128-bit Hamming code
• Different ECC functions 

• Known as parity-check matrices (i.e., 𝑯-matrices)

• All correct 1 error, but act differently on 2+ errors

•Manufacturers are free to choose any design
• Circuit optimization goals (e.g., area, power)

• Details are highly proprietary (even under NDA)
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0xFF test pattern @ RBER=10-4

Effect of Different On-Die ECC Designs

•32-bit single-error correction Hamming codes

•Three different parity-check matrices

Nonuniform errors

•Simulating uniform-random errors in a 32b ECC word
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0xFF test pattern @ RBER=10-4

Effect of Different On-Die ECC Designs

•32-bit single-error correction Hamming codes

•Three different parity-check matrices

Nonuniform errors

•Simulating uniform-random errors in a 32b ECC word
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The same error characteristics 

can appear very different

with different ECC functions



Challenges for Third Parties

• On-die ECC forces system architects to support unpredictable, 
chip-dependent memory reliability characteristics

System Architects: Designing Error Mitigations

• On-die ECC hides the root-causes of uncorrectable errors       
and defeats test patterns designed to target physical cells

Test/Validation Engineers: Post-Manufacturing Testing

• On-die ECC conflates raw bit errors with ECC artifacts, 
effectively obfuscating the true physical cell characteristics

Research Scientists: Error-Characterization Studies
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These challenges all arise

from the inability to predict 

how ECC transforms error patterns



Overcoming Challenges of On-Die ECC

Our goal: Determine the on-die ECC function without:

(1) hardware support or tools

(2) prior knowledge about on-die ECC

(3) access to ECC metadata (e.g., syndromes)

•Reveals how on-die ECC scrambles errors (BEER)

•Allows inferring raw bit error locations (BEEP)

Data
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I/O

𝑭𝒆𝒏𝒄𝒐𝒅𝒆
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Error Correction During Decoding
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•Two-step decoding algorithm: syndrome decoding
1. Calculate an error syndrome that points to error(s)

2. Correct detected errors (if any)
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𝒔 points to the
error location

(if any)

𝒔 points to an arbitrary
𝑯-dependent position



Error Correction During Decoding
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•Two-step decoding algorithm: syndrome decoding
1. Calculate an error syndrome that points to error(s)

2. Correct detected errors (if any)
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𝒔 points to the
error location
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𝒔 points to an arbitrary
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Key idea: exploit the 𝑯-dependence 

of uncorrectable errors

to disambiguate ECC functions



Determining the On-Die ECC Function
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•Approach: iteratively isolate linear components of 𝑯
• Demonstrated by [Cojocar+, SP’19] for rank-level ECC
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Determining the On-Die ECC Function
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•Approach: iteratively isolate linear components of 𝑯
• Demonstrated by [Cojocar+, SP’19] for rank-level ECC
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On-die ECC causes two challenges:
1. No way to inject errors in bit[n]

2. No way to observe error syndromes



Challenge 1: Injecting Errors

•Key idea: deliberately induce data-retention errors
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Assume data is stored unmodified
(systematic encoding)

•Difference between CHARGED and DISCHARGED cells 
allows us to restrict errors to specific bit positions

Possible errors 
are limited 

to certain bits

CHARGED
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- - C

Challenge 2: Inferring Error Syndromes

C D D D

Test Pattern

C D D D D D C
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Induce data-retention errors
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Post-Correction Data
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No error

Correctable

Uncorrectable

𝑯𝑩 C C D D
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Different 𝑯𝑿 generate 

different error syndromes
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Parity-check bits



Challenge 2: Inferring Error Syndromes

C D D D
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Induce data-retention errors

Possible Error Patterns

𝐷𝑒𝑐𝑜𝑑𝑒

Post-Correction Data
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No error

Correctable

Uncorrectable

𝑯𝑩 C C D D

𝑯𝑪 C D C D

𝑯𝑫 C D D C

Different 𝑯𝑿 cause different 

uncorrectable errors
We can differentiate error syndromes

from uncorrectable error patterns
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Choosing a Set of Test Patterns

•We consider the “𝑛-CHARGED” test patterns:

C D D D D C D D D D D C1-CHARGED = { }, , . . . ,
C C D D C D C D D D C C2-CHARGED = { }, , . . . ,
C C C D C D C C D D C C3-CHARGED = { }, , . . . ,

•Our paper explains that the combined {1,2}-CHARGED 
patterns are sufficient to identify the ECC function

•For each test pattern, we find all possible 
uncorrectable errors that can occur
• Exploit uniform-randomness of data-retention errors
• Even one DRAM chip provides millions of samples

• E.g., 2 GiB DRAM module yields 224 128-bit words
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BEER: Bit-Exact ECC Recovery

Experimentally induce data-retention 
errors using {1,2}-CHARGED test patterns1

Solve for the ECC function with the 

observed behavior using a SAT solver3

For each test pattern, identify 

all possible uncorrectable errors2
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BEEP and Other Practical Use Cases for BEER
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Experimental Methodology

•80 LPDDR4 chips from 3 DRAM manufacturers
• Manufacturers anonymized as ‘A’, ‘B’, and ‘C’

• Temperature-controlled testing infrastructure

• Control over DRAM timings (including refresh)

•Refresh windows between 1-30 minutes at 30-80◦C
• Leads to bit error rates (BERs) between 10-7 and 10-3

• BERs far larger than those of unwanted soft errors
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Applying BEER to LPDDR4 Chips

• Study the uncorrectable errors in the 1-CHARGED patterns

Repeating patterns indicate 
structure in the H-matrix

Variation between manufacturers
indicates different ECC functions

Data retention errors 
within CHARGED bits

Miscorrections
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1. Different manufacturers appear to use    

different on-die ECC functions

2. Chips of the same model number 

appear to use identical ECC functions
(shown in our paper)



Solving for the ECC Function

•We use the Z3† SAT solver to identify the 𝑯-matrix
•We demonstrate BEER for SEC Hamming codes, but it 
should readily extend to all linear block codes (e.g., BCH)

•We open-source our BEER implementation on GitHub
• https://github.com/CMU-SAFARI/BEER

•Unfortunately, we face two limitations to validation:
1. No way to check the final results since we cannot see 

into the on-die ECC implementation

2. We cannot share our final matrices due to 
confidentiality reasons

†L. De Moura and N. Bjørner, “Z3: An Effient SMT Solver,” TACAS, 2008.
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We validate BEER in simulation to:

1. Evaluate correctness

2. Overcome confidentiality issues

3. Test a larger set of ECC codes



Simulation Methodology

•We use the EINSim† DRAM error-correction simulator

•We simulate 115,300 different SEC Hamming codes
• ECC dataword lengths from 4 to 247 bits

• 1-, 2-, 3-, and {1,2}-CHARGED test patterns

•For each test pattern:
• Simulate 109 ECC words (≈14.9 GiB for 128-bit words)

• Simulate data-retention errors with BER between 10-5 and 10-2

†Patel et al., “Understanding and Modeling On-Die Error Correction in Modern DRAM: 

An Experimental Study Using Real Devices,” DSN, 2019.

34



BEER Correctness Evaluation

•Evaluate the number of SAT solutions found by BEER
• Shows whether the ‘unique’ solution is identified

1-, 2-, 3-CHARGED 
patterns individually do 

not always succeed
{1,2} -CHARGED patterns 
succeed for all test cases
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BEER Correctness Evaluation

•Evaluate the number of SAT solutions found by BEER
• Shows whether the ‘unique’ solution is identified

1-, 2-, 3-CHARGED 
patterns individually do 

not always succeed
{1,2} -CHARGED patterns 
succeed for all test cases

BEER successfully identifies 

the ECC function using 

the {1,2}-CHARGED test patterns
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Two Other Evaluations in the Paper

37

1. Practicality of BEER’s SAT problem
•Measure SAT problem runtime and memory consumption

• Negligible for short codes (i.e., < 1 minute, < 1 MiB RAM)

• Realistic for long codes given that BEER is run offline
• e.g., 57.1 hours + 6.3 GiB RAM for 128-bit code

2. Analytical experimental runtime analysis
•Majority time is spent waiting for data-retention errors

• 4.2 hours of testing per chip in our experiments
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Practical Use Cases for BEER

•We provide 5 use cases in our paper to show how 
knowing the ECC function is useful in practice

System Design
Architecting DRAM controller error mitigations 

that are informed about on-die ECC

Error 
Characterization

Studying the statistical properties 

of raw bit errors (e.g., spatial distributions)

Testing

Crafting worst-case test patterns 

to enable efficient testing and validation

Root-cause analysis for uncorrectable errors
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BEEP: identifying raw bit error locations 

corresponding to observed post-correction errors
Error Profiling



BEEP: Profiling for Raw Bit Errors
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•Key idea: knowing the ECC function (i.e., via BEER) 
enables calculating raw bit error positions

E - - - E E E - E E -
ECC Decoder

Raw Error Pattern

Observed Errors

(Uncorrectable)

• BEEP infers which physical cells are susceptible to 
data-retention errors using only the observed errors

Known

Can calculate 
(explained in the paper)



BEEP: High-Level Algorithm
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• Iteratively test each bit in the ECC word and keep 
track of the error-prone cells it identifies

Craft a test pattern 

targeting the bit under test1

Calculate raw bit error locations 

corresponding to uncorrectable errors3

Test for data-retention errors2

For each bit in the ECC word



Evaluating BEEP’s Accuracy
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•We evaluate BEEP’s success rate of identifying raw 
bit errors in simulation
• Varying ECC word lengths and bit error rates

• 100 ECC words simulated per measurement



Evaluating BEEP’s Accuracy
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•We evaluate BEEP’s success rate of identifying raw 
bit errors in simulation
• Varying ECC word lengths and bit error rates

• 100 ECC words simulated per measurement

BEEP is more successful for:

1.Longer ECC words

2.Higher-probability errors



Other Information in the Paper

•Formalism for BEER and the 𝑛-CHARGED test patterns

•BEER evaluations using experiment and simulation

• Sensitivity to experimental noise
• Analysis of experimental runtime
• Practicality of the SAT problem (i.e., runtime, memory)

•BEEP evaluations in simulation

• Accuracy at different error rates
• Sensitivity to different ECC codes and word sizes

•Detailed discussion of use-cases for BEER

•Discussion on BEER’s requirements and limitations

44



Executive Summary
Problem: DRAM on-die ECC complicates third-party reliability studies

• Proprietary design obfuscates raw bit errors in an unpredictable way

• Interferes with (1) design, (2) test & validation, and (3) characterization

Goal: understand exactly how on-die ECC obfuscates errors

Contributions:

1. BEER: new testing methodology that determines a DRAM chip’s unique 
on-die ECC function (i.e., its parity-check matrix)

2. BEEP: new error profiling methodology that infers the raw bit error 
locations of error-prone cells from the observable uncorrectable errors

BEER Evaluations:

• Apply BEER to 80 real LPDDR4 chips from 3 major DRAM manufacturers

• Show correctness in simulation for 115,300 codes (4-247b ECC words)

https://github.com/CMU-SAFARI/BEER

We hope that both BEER and BEEP 
enable many valuable studies going forward
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