
HARP: Practically and Effectively
Identifying Uncorrectable Errors in Memory Chips

That Use On-Die Error-Correcting Codes
Minesh Patel
ETH Zürich

Geraldo F. Oliveira
ETH Zürich

Onur Mutlu
ETH Zürich

ABSTRACT
Aggressive storage density scaling inmodernmainmemories causes
increasing error rates that are addressed using error-mitigation
techniques. State-of-the-art techniques for addressing high error
rates identify and repair bits that are at risk of error from within
the memory controller. Unfortunately, modern main memory chips
internally use on-die error correcting codes (on-die ECC) that ob-
fuscate the memory controller’s view of errors, complicating the
process of identifying at-risk bits (i.e., error profiling).

To understand the problems that on-die ECC causes for error
profiling, we analytically study how on-die ECC changes the way
that memory errors appear outside of the memory chip (e.g., to the
memory controller). We show that on-die ECC introduces statistical
dependence between errors in different bit positions, raising three
key challenges for practical and effective error profiling: on-die
ECC (1) exponentially increases the number of at-risk bits the pro-
filer must identify; (2) makes individual at-risk bits more difficult
to identify; and (3) interferes with commonly-used memory data
patterns that are designed to make at-risk bits easier to identify.

To address the three challenges, we introduce Hybrid Active-
Reactive Profiling (HARP), a new error profiling algorithm that
rapidly achieves full coverage of at-risk bits based on two key in-
sights. First, errors that on-die ECC fails to correct have two sources:
(1) direct errors from raw bit errors in the data portion of the ECC
word and (2) indirect errors that on-die ECC introduces when fac-
ing uncorrectable errors. Second, the maximum number of indirect
errors that can occur concurrently is limited to the correction ca-
pability of on-die ECC. HARP’s key idea is to first identify all bits
at risk of direct errors using existing profiling techniques with the
help of small modifications to the on-die ECC mechanism. Then,
a secondary ECC within the memory controller with correction
capability equal to or greater than that of on-die ECC can safely
identify bits at-risk of indirect errors, if and when they fail.

We evaluate HARP in simulation relative to two state-of-the-art
baseline error profiling algorithms. We show that HARP achieves
full coverage of all at-risk bits faster (e.g., 99th-percentile coverage
20.6%/36.4%/52.9%/62.1% faster, on average, given 2/3/4/5 raw bit er-
rors per ECC word) than the baseline algorithms, which sometimes
fail to achieve full coverage. We perform a case study of how each

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
MICRO ’21, October 18–22, 2021, Virtual Event, Greece
© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-8557-2/21/10. . . $15.00
https://doi.org/10.1145/3466752.3480061

profiler impacts the system’s overall bit error rate (BER) when using
a repair mechanism to tolerate DRAM data-retention errors. We
show that HARP identifies all errors faster than the best-performing
baseline algorithm (e.g., by 3.7× for a raw per-bit error probability
of 0.75). We conclude that HARP effectively overcomes the three
error profiling challenges introduced by on-die ECC.

CCS CONCEPTS
• Computer systems organization → Dependable and fault-
tolerant systems and networks; • Hardware → Memory test
and repair.

KEYWORDS
On-Die ECC, DRAM, Memory Test, Repair, Error Profiling, Error
Modeling, Memory Scaling, Reliability, Fault Tolerance
ACM Reference Format:
Minesh Patel, Geraldo F. Oliveira, and Onur Mutlu. 2021. HARP: Practically
and Effectively Identifying Uncorrectable Errors in Memory Chips That Use
On-Die Error-Correcting Codes. In Proceedings of the 54th Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO ’21), October 18–22,
2021, Virtual Event, Greece. ACM, New York, NY, USA, 18 pages. https:
//doi.org/10.1145/3466752.3480061

1 INTRODUCTION
Modern memory technologies that are suitable for main mem-
ory (e.g., Dynamic Random Access Memory (DRAM) [38, 116],
Phase-ChangeMemory (PCM) [17, 101, 102, 151, 177], Spin-Transfer
Torque RAM (STT-RAM) [56, 97]) all suffer from various errormech-
anisms that play a key role in determining reliability, manufacturing
yield, and operating characteristics such as performance and energy
efficiency [17, 21, 45, 62, 74, 87, 97, 101, 102, 107, 116, 144, 174, 184].
Unfortunately, as memory designers shrink (i.e., scale) memory pro-
cess technology node sizes to meet ambitious capacity, cost, perfor-
mance, and energy efficiency targets, worsening reliability becomes
an increasingly significant challenge to surmount [10, 21, 54, 74, 87,
89, 91, 107, 116, 129, 132, 136, 144, 150, 170]. For example, DRAM
process technology scaling exacerbates cell-to-cell variation and
noise margins, severely impacting error mechanisms that constrain
yield, including cell data-retention [21, 46, 47, 54, 74, 76, 77, 93, 110,
136, 144, 147, 161, 171] and read-disturb [40, 52, 87, 91, 131, 132, 141]
phenomena. Similarly, emerging main memory technologies suffer
from various error mechanisms that can lead to high error rates if
left unchecked, such as limited endurance, resistance drift, andwrite
disturbance in PCM [10, 62, 73, 88, 101, 105] and data retention, en-
durance, and read disturbance in STT-RAM [9, 25, 28, 134, 152, 170].
Therefore, enabling reliable system operation in the presence of
scaling-related memory errors is a critical research challenge for
allowing continued main memory scaling.

1

https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://doi.org/10.1145/3466752.3480061
https://doi.org/10.1145/3466752.3480061
https://doi.org/10.1145/3466752.3480061

Errormitigationmechanisms and on-die ECC.Modern sys-
tems tolerate errors using error-mitigation mechanisms, which pre-
vent errors that occur within the memory chip from manifesting
as software-visible bit flips. Different error-mitigation mechanisms
target different types of errors, ranging from fine- to coarse-grained
mitigation using hardware and/or software techniques. §2.1 reviews
main memory error-mitigation mechanisms.

To address increasing memory error rates, memory chip manu-
facturers have started to incorporate on-die error-correcting codes
(on-die ECC).1 On-die ECC is already prevalent among modern
DRAM (e.g., LPDDR4 [98, 99, 121, 140, 145, 146], DDR5 [67]) and
STT-RAM [39] chips because it enables memory manufacturers to
aggressively scale their technologies while maintaining the appear-
ance of a reliable memory chip. Unfortunately, on-die ECC changes
how memory errors appear outside the memory chip (e.g., to the
memory controller or the system software). This introduces new
challenges for designing additional error-mitigation mechanisms at
the system level [21, 32, 43, 69, 115, 137, 142, 162] or test a memory
chip’s reliability characteristics [41, 44, 145, 146].

In this work, we focus on enabling a class of state-of-the-art
hardware-based error-mitigation mechanisms known as repair
mechanisms2 [61, 92, 93, 109, 111, 112, 135, 136, 150, 157, 158,
162, 168, 171, 176, 179, 180] when used alongside memory chips
with on-die ECC. These repair mechanisms operate from out-
side the memory chip (e.g., from the memory controller) to iden-
tify and repair memory locations that are at risk of error (i.e.,
are known or predicted to experience errors). In particular, prior
works [92, 136, 157, 158, 168] show that bit-granularity repair mech-
anisms efficiently tackle high error rates (e.g., > 10−4) resulting
from aggressive technology scaling by focusing error-mitigation
resources on bits that are known to be susceptible to errors.

Fig. 1 illustrates a system that uses both a repair mechanism
(within the memory controller) and on-die ECC (within the memory
chip). On-die ECC encodes all data provided by the CPU before
writing it to the memory. On a read operation, on-die ECC first
decodes the stored data, correcting any correctable errors. The
repair mechanism then repairs the data before returning it to the
CPU. The repair mechanism performs repair operations using a list
of bits known to be at risk of error, called an error profile.

Error-Prone
Data Store

Memory ChipMemory Controller

On-Die
ECC

On-Die
ECC

encoded
write data

to
/f

ro
m

 C
PU

repaired
read data

write data

Repair
Mechanism

Error Profile

encoded
read data

read
data

write
data

Figure 1: High-level block diagram of a system that uses a repair
mechanism with a memory chip that uses on-die ECC.

Error profiling. Repair mechanisms depend on having a practi-
cal algorithm for identifying at-risk memory locations to repair. We
refer to this as an error profiling algorithm. We classify a profiling
algorithm as either active or reactive depending on whether it takes
1Our work applies to any memory chip that is packaged with a proprietary ECC
mechanism; on-die ECC is one embodiment of such a chip.
2We discuss repair mechanisms in detail in §2.2.

action to search for at-risk memory locations or passively monitors
memory to identify errors as they occur during normal system
operation. Prior works [11, 12, 24, 27, 29, 30, 40, 48, 76–79, 82, 84,
86, 87, 103, 104, 109–111, 132, 145, 147, 149, 150, 159, 168, 171, 183]
propose a variety of algorithms for active profiling. In general, these
algorithms all search for errors using multiple rounds of tests that
each attempt to induce and identify errors (e.g., by taking exclusive
control of the memory chip [110, 145, 147, 168]). The algorithms
maximize the chance of observing errors to identify as many at-risk
bits as possible by testing under worst-case conditions (e.g., data and
access patterns, operating conditions). Only BEEP [145] accounts
for the effects of on-die ECC by first reverse-engineering the on-die
ECC implementation, so we refer to all other active profiling algo-
rithms as Naive in the context of this work. In contrast, proposals
for reactive profiling passively monitor an error-detection mech-
anism (typically an ECC) to identify errors as they occur during
normal system operation [14, 63, 119, 128, 149, 150, 156, 159].

Regardless of the profiling algorithm, any at-risk bits that the
profiler misses will not be repaired by the repair mechanism that
the profiler supports. Therefore, achieving practical and effective
repair requires a profiling algorithm that quickly and efficiently
achieves high coverage of at-risk memory locations.

On-die ECC’s impact on error profiling. Unfortunately, on-
die ECC fundamentally changes how memory errors appear outside
of the memory chip: instead of errors that follow well-understood
semiconductor error models [66], the system observes obfuscated
error patterns that vary with the particular on-die ECC implemen-
tation [145, 146]. This is a serious challenge for existing profiling
algorithms because, as §4 shows, on-die ECC both (1) increases the
number of at-risk bits that need to be identified and (2) makes those
bits harder to identify. Even a profiler that knows the on-die ECC
implementation (e.g., BEEP [145]) cannot easily identify all at-risk
bits because it lacks visibility into the error-correction process.

Our goal is to study and address the challenges that on-die
ECC introduces for bit-granularity error profiling. To this end, we
perform the first analytical study of how on-die ECC affects error
profiling. We find that on-die ECC introduces statistical dependence
between errors in different bit positions such that, even if raw bit
errors (i.e., pre-correction errors) occur independently, errors ob-
served by the system (i.e., post-correction errors) do not. This raises
three new challenges for practical and effective bit-granularity error
profiling (discussed in detail in §4).

First, on-die ECC transforms a small set of bits at risk of pre-
correction errors into a combinatorially larger set of bits at risk
of post-correction errors. §4.1 shows how this exponentially in-
creases the number of bits the profiler must identify. Second, on-die
ECC ties post-correction errors to specific combinations of pre-
correction errors. Only when those specific pre-correction error
combinations occur, can the profiler identify the corresponding
bits at risk of post-correction errors. §4.2 shows how this signif-
icantly slows down profiling. Third, on-die ECC interferes with
commonly-used memory data patterns that profilers use to maxi-
mize the chance of observing errors. This is because post-correction
errors appear only when multiple pre-correction errors occur con-
currently, which the data patterns must account for. §4.3 discusses
the difficulty of defining new data patterns for use with on-die ECC.

2

To address these three challenges, we introduce Hybrid Active-
Reactive Profiling (HARP), a new bit-granularity error profiling
algorithm that operates within the memory controller to support
a repair mechanism for memory chips with on-die ECC. HARP is
based on two key insights. First, given that on-die ECC uses system-
atic encoding (i.e., data bits are preserved one-to-one during ECC
encoding3), there are only two possible types of post-correction er-
rors: (1) direct errors, corresponding to pre-correction errors within
the systematically encoded data bits; and (2) indirect errors, result-
ing from mistaken correction operations (i.e., miscorrections) on-die
ECC performs for uncorrectable errors. Second, because on-die ECC
corrects a fixed number N of errors, at most N indirect errors can
occur concurrently (e.g., N = 1 for a Hamming code [49]).

Based on these insights, the key idea of HARP is to reduce the
problem of profiling a chip with on-die ECC into that of a chip
without on-die ECC by separately identifying direct and indirect
errors. HARP consists of two phases. First, an active profiling phase
that uses existing profiling techniques to identify bits at risk of
direct errors with the help of a simple modification to the on-die
ECC read operation that allows the memory controller to read raw
data (but not the on-die ECC metadata) values. Second, a reactive
profiling phase that safely identifies bits at risk of indirect errors
using a secondary N -error-correcting ECC within the memory
controller. The secondary ECC is used only for reactive profiling:
upon identifying an error, the corresponding bit is marked as at-risk,
which signals the repair mechanism to repair the bit thereafter.

Prior work [145] shows that knowing the on-die ECC’s internal
implementation (i.e., its parity-check matrix)4 enables calculating
which post-correction errors a given set of pre-correction errors
can cause. Therefore, we introduce two HARP variants: HARP-
Aware (HARP-A) and HARP-Unaware (HARP-U), which do and do
not know the parity-check matrix, respectively. HARP-A does not
improve coverage over HARP-U because it has no additional visibil-
ity into the pre-correction errors. However, HARP-A demonstrates
that, although knowing the parity-check matrix alone does not over-
come the three profiling challenges, it does provide a head-start for
reactive profiling based on the results of active profiling.

We evaluate HARP in simulation relative to two state-of-the-art
baseline error profiling algorithms: Naive (which represents the
vast majority of previous-proposed profiling algorithms [11, 12,
24, 27, 29, 30, 40, 48, 76–79, 82, 84, 86, 87, 103, 104, 109–111, 132,
145, 147, 149, 150, 159, 168, 171, 183]) and BEEP [145]. We show
that HARP quickly achieves coverage of all bits at risk of direct
errors while Naive and BEEP are either slower or unable to achieve
full coverage. For example, when there are 2/3/4/5 bits at risk of
pre-correction error that each fail with probability 0.5, HARP5
achieves 99th-percentile6 coverage in 20.6%/36.4%/52.9%/62.1% of
the profiling rounds required by the best baseline algorithm. Based

3Nonsystematic designs require additional decoding effort (i.e., more logic operations)
because data cannot be read directly from stored values [181]. This increases the energy
consumption of read operations and either reduces the overall read timing margins
available for other memory operations or increases the memory read latency.
4Potentially provided through manufacturer support, datasheet information, or
previously-proposed reverse engineering techniques [145].
5HARP-U and HARP-A have identical coverage of bits at risk of direct error.
6We report 99th percentile coverage to compare against baseline configurations that do
not achieve full coverage within the maximum simulated number of profiling rounds
(due to simulation time constraints, as discussed in §7.1.2).

on our evaluations, we conclude that HARP effectively overcomes
the three profiling challenges. We publicly release our simulation
tools as open-source software on Zenodo [148] and Github [3].

To demonstrate the end-to-end importance of having an effective
profiling mechanism, we also perform a case study of how HARP,
Naive, and BEEP profiling can impact the overall bit error rate of a
system equipped with an ideal bit-repair mechanism that perfectly
repairs all identified at-risk bits. We show that, because HARP
achieves full coverage of bits at risk of direct errors, it enables the
bit-repair mechanism to repair all errors. AlthoughNaive eventually
achieves full coverage, it takes substantially longer to do so (by 3.7×
for a raw per-bit error probability of 0.75). In contrast, BEEP does
not achieve full coverage, so the bit-repair mechanism is unable to
repair all errors that occur during system operation.

We make the following contributions:
• We conduct the first analytical study of how on-die ECC affects
system-level bit-granularity error profiling. We identify three
key challenges that must be addressed to enable practical and
effective error profiling in main memory chips with on-die ECC.

• We introduce Hybrid Active-Reactive Profiling (HARP), a new
bit-granularity error profiling algorithm that quickly achieves
full coverage of at-risk bits by profiling errors in two phases: (1)
active profiling using raw data bit values to efficiently identify
all bits at risk of direct errors; and (2) reactive profiling with the
guarantee that all remaining at-risk bits can be safely identified.

• We introduce two HARP variants, HARP-Unaware (HARP-U)
and HARP-Aware (HARP-A). HARP-A exploits knowledge of
the on-die ECC parity-check matrix to achieve full coverage of
at-risk bits faster by precomputing at-risk bit locations.

• We evaluate HARP relative to two baseline profiling algo-
rithms. An example result shows that HARP achieves 99th-
percentile coverage of all bits at risk of direct error in
20.6%/36.4%/52.9%/62.1% of the profiling rounds required by
the best baseline technique given 2/3/4/5 pre-correction errors.

• We present a case study of how HARP and the two baseline pro-
filers impact the overall bit error rate of a system equipped with
an ideal repair mechanism that perfectly repairs all identified
at-risk bits. We show that HARP enables the repair mechanism
to mitigate all errors faster than the best-performing baseline
(e.g., by 3.7× for a raw per-bit error probability of 0.75).

2 BACKGROUND AND MOTIVATION
This section briefly discusses repair mechanisms, error profiling,
our assumed error model, and on-die ECC. For more detailed back-
ground information, we refer the reader to other publications on
repair [55, 61, 92, 93, 109, 112, 136, 157, 158, 168, 176, 179], profil-
ing [11, 27, 30, 40, 48, 76–79, 87, 103, 111, 147, 150, 159, 171, 183]
and main memory error mechanisms [9, 25, 28, 46, 47, 62, 73, 77,
87, 88, 91, 93, 101, 105, 110, 120, 134, 136, 152, 170, 178].

2.1 Addressing Scaling-Related Errors
Continual increases to memory storage density exacerbate vari-
ous technology-specific error mechanisms (e.g., DRAM data reten-
tion [21, 46, 47, 54, 74, 76, 77, 93, 110, 136, 144, 147, 161, 162, 171])
that result in increasing error rates. To address these errors, main
memory manufacturers have already begun to use on-die ECC (e.g.,

3

LPDDR4 [98, 99, 121, 140], DDR5 [67], STT-RAM [39]) as a black-
box error mitigation technique within the memory chip, regardless
of whether or not it is the most efficient solution for a given system.
On-die ECC addresses uncorrelated single-bit errors that limit a
manufacturers’ factory yield [21, 43, 60, 74, 121, 145, 146, 162] and
is already prevalent among commodity DRAM chips today. There-
fore, it is imperative that system-level error-mitigation mechanisms
take on-die ECC into account, as clearly motivated by several prior
works [21, 32, 43, 69, 137, 145, 162].

2.1.1 Mitigating High Error Rates. As memory technologies
continue to scale, prior works [21, 92, 109, 135, 136, 162] argue
that raw bit error rates will grow to very high values (e.g., > 10−4
in DRAM [21, 136]).7 Enabling robust memory operation at these
error rates is an established research area for future DRAM and
nonvolatile memories [34, 92, 93, 109, 112, 133, 135, 136, 157, 162,
174, 180] because it allows for both continued memory density
scaling and enables new system operating points and use-cases
(e.g., reliably reducing memory timings and voltages [22–24, 72, 84,
95, 103, 138, 160, 182]) that are not feasible today. In general, fine-
grained (e.g., bit or word granularity) hardware repair mechanisms
can mitigate high error rates more efficiently than conventional
hardware error-mitigation techniques (e.g., ECC) [92, 93, 109, 112,
136, 150, 162]. §2.2 discusses repair mechanisms in further detail.

2.1.2 Consolidating In-Memory and Memory Controller
Error Mitigations. Unlike Flash memory [18–20, 113, 114], main
memory is generally designed separately from the memory con-
troller [130]. Unfortunately, this separation discourages building
a unified error-mitigation mechanism across the memory and its
controller. This is exemplified by the widespread use of proprietary
DRAM on-die ECC, which introduces new reliability challenges
for designing error mitigation mechanisms within the DRAM con-
troller [21, 32, 43, 137, 145, 162]. In general, the standardized inter-
face between the memory and the controller (e.g., JEDEC DRAM
standards [64, 67, 68]) must be modified to develop a joint solu-
tion, which impacts all manufacturers and consumers involved,
and thus is a laborious and long (and often politically-charged)
process. Therefore, we and other state-of-the-art hardware-based
repair mechanisms focus on minimizing the changes required to the
interface or memory chips themselves [80, 81, 109, 136, 150, 162].

2.1.3 Synergy with Other Error Mitigation Approaches. Ef-
fective main memory error management is a large research space
with solutions spanning the entire hardware-software stack. There
are many promising solution directions, including software-driven
repair techniques such as page retirement [12, 58, 118, 120, 139, 171]
and software-assisted techniques such as post-package repair
(PPR) [21, 55, 64, 67, 74, 116, 136, 162]. Unfortunately, these mecha-
nisms have limitations that make them ill-suited to address the high
error rates that we target. For example, page retirement operates at
a coarse (i.e., system memory page) granularity, so it both wastes
significant capacity to repair the many errors at high error rates
and cannot easily repair in-use pages [106, 118, 120]. PPR provides

7Exact error rate values of real memory chips are proprietary secrets because they can
revealmanufacturing details and/or information relating tomarket competitiveness [42,
136]. Prior works draw reasonable estimates from circuit metrics, e.g., coefficient of
variation [61, 93, 135].

only a few spare rows (e.g., one per bank in DDR4 [81, 122]) and
suffers from similar drawbacks as page retirement due to operating
at a coarse granularity (i.e., DRAM row). In contrast, hardware-
based repair mechanisms represent the state-of-the-art in address-
ing scaling-related main memory errors.

We note that other error mitigation techniques may be used
synergistically with hardware-based repair, potentially to address
different error models simultaneously. Our work both (1) identifies
the challenges that on-die ECC introduces for repair mechanisms;
and (2) demonstrates a concrete way (i.e., HARP) to address these
challenges with minimal changes to existing systems. Given that
on-die ECC is highly prevalent today (e.g., LPDDR4 [121, 140],
DDR5 [67], STT-RAM [39]), our ideas are applicable to and eval-
uated based on current state-of-the-art solutions. In doing so, we
believe our work will help guide future solutions that develop new
abstractions to step beyond simple on-die ECC as it exists today.

2.2 Enabling Repair Alongside On-Die ECC
Repair mechanisms [55, 61, 84, 92, 93, 103, 109, 112, 116, 136, 157,
158, 162, 168, 176, 179] perform repair at granularities ranging from
kilobytes to single bits. The granularity at which a repair mecha-
nism identifies at-risk locations is its profiling granularity. For exam-
ple, on-die row and column sparing [21, 55, 64, 67, 74, 116, 136, 162]
requires identifying at-risk locations at (or finer than) the granular-
ity of a single memory row. Table 1 categorizes key repair mecha-
nisms based their profiling granularities. In general, coarse-grained
repair requires less intrusive changes to the system datapath be-
cause repair operations can align with data blocks in the datapath
(e.g., DRAM rows, cache lines, processor words). However, this
means that the repair mechanism suffers from more internal frag-
mentation because each repair operation sacrifices more memory
capacity regardless of how few bits are actually at risk of error.

Profiling Granularity Size (Bits) Examples

System page 32 K RAPID [171], RIO [12],
Page retirement [12, 58, 118, 139, 171]

DRAM external row 2-64 K PPR [21, 55, 64, 67, 74, 116, 136, 162], Agnos [150],
RAIDR [111], DIVA [103]

DRAM internal row/col 512-1024 Row/col sparing [21, 55, 74, 116, 136, 162], Solar [84]
Cache block 256-512 FREE-p [179], CiDRA [162]
Processor word 32-64 ArchShield [136]
Byte 8 DRM [61]

Single bit 1 ECP8 [157], SECRET [109], REMAP [168], SFaultMap [92],
HOTH [112], FLOWER [93], SAFER [158], Bit-fix [176]

Table 1: Survey of prevalent memory repair mechanisms.

Because of this tradeoff between intrusiveness and fragmenta-
tion, finer repair granularities are more efficient at higher error
rates [21, 136, 162]. Fig. 2 illustrates this by showing the expected
proportion of unnecessarily repaired bits (i.e., the amount of non-
erroneous memory capacity that is sacrificed alongside truly erro-
neous bits due to internal fragmentation) (y-axis) at various raw
bit error rates (x-axis) when mitigating uniform-random single-bit
errors at different repair granularities. We see that coarse-grained
repair becomes extremely wasteful as errors become more frequent,
e.g., wasting over 99% of total memory capacity in the worst case
for a 1024-bit granularity at a raw bit error rate of 6.8 × 10−3. Note
that the expected wasted storage decreases once the error rate is
8ECP corrects individual bits, but its pointer size can be adjusted to different granular-
ities as required.

4

sufficiently high because an increasing proportion of bits become
truly erroneous, which reduces the wasted bits for each repair op-
eration. In contrast, bit-granularity repair (denoted with the line
for ‘1’) does not suffer from internal fragmentation. For this reason,
repair mechanisms designed for higher error rates generally employ
finer-granularity profiling and repair [92, 93, 109, 112].

10 7 10 5 10 3 10 1

Raw Bit Error Rate (RBER)

0.0

0.2

0.4

0.6

0.8

1.0

Ex
pe

ct
ed

 W
as

te
d

St
or

ag
e

(R
at

io
 o

f O
rig

in
al

 C
ap

ac
ity

)

 Repair Granularity (Bits)
1024
512
64
32
1

Figure 2: Expected amount of wasted storage capacity when repair-
ing single-bit errors at various repair granularities.

2.3 Practical and Effective Error Profiling
Any repair mechanism’s effectiveness strongly depends on the
effectiveness of the error profiling algorithm that it uses because the
repair mechanism can only repair memory locations that it knows
are at risk of error. In this section, we define the key properties of
practical and effective active and reactive profilers.

2.3.1 Active Profiling. Active profiling algorithms take exclu-
sive control of a memory chip in order to (possibly destruc-
tively) test worst-case data and access patterns [11, 30, 40, 48, 77–
79, 87, 103, 111, 147, 171, 183], so the system cannot perform useful
work while profiling. Therefore, an active profiler must identify
at-risk bits as quickly and comprehensively as possible. We quantify
this by measuring the fraction of all at-risk bits that a given profiler
identifies (i.e., its coverage) across a fixed number of testing rounds.

2.3.2 Reactive Profiling. Reactive profiling algorithms (e.g.,
ECC scrubbing [6, 27, 50, 134, 150, 159]) passively monitor error-
detection mechanisms during normal system operation, so their
performance and energy impact is relatively low and can be amor-
tized across runtime [50, 150]. However, because reactive profilers
operate during runtime, they must ensure that they can not only
detect, but also correct any errors that occur. Any errors that are
not detected and corrected by the reactive profiler risk introduc-
ing failures to the rest of the system. In our work, we quantify
the error-mitigation capability of a reactive profiler in terms of
ECC correction capability, which is well-defined for ECCs used in
memory hardware design (i.e., linear block codes [55, 154, 155]).

2.4 Errors and Error Models
Our work assumes uncorrelated single-bit errors because recent
experimental studies and repair efforts from academia [15, 112, 135,
136, 162], industry [74], and memory manufacturers themselves [21,
60, 61, 121, 144] focus on single-bit errors as the primary reliability
challenge with increasing storage density. In particular, DRAM and
STT-RAM manufacturers use on-die ECC specifically to combat
these errors in recent high-density chips [21, 39, 43, 60, 74, 121, 140].
Therefore, we assume that errors exhibit the following properties:

(1) Bernoulli process: independent of previous errors.
(2) Isolated: independent of errors in other bits.
(3) Data-dependent: dependent on the stored data pattern.

To first order, this error model suits a broad range of error mech-
anisms that relate to technology scaling and motivate the use of
bit-granularity repair, including DRAM data-retention [12, 46, 47,
70, 71, 77, 90, 92–94, 108, 110, 136, 147, 171, 175] and read distur-
bance [87, 91, 143]; PCM endurance, resistance drift, and write
disturbance [62, 73, 88, 101, 105, 157]; and STT-RAM data retention,
endurance, and read disturbance [9, 25, 28, 134, 152, 170]. We use
DRAM data-retention errors in our evaluations as a well-studied
and relevant example. However, a profiler is fundamentally agnostic
to the underlying error mechanism; it identifies at-risk bits based on
whether or not they are observed to fail during profiling. Therefore,
our analysis applies directly to any error mechanism that can be
described using the aforementioned three properties.
Correlated Errors. Prior DRAM studies show evidence of cor-
related errors [5, 120, 163–165, 167]. However, we are not aware
of evidence that such errors are a first-order concern of modern
DRAM technology scaling. Correlated errors often result from faults
outside the memory array [120] and are mitigated using fault-
specific error-mitigation mechanisms (e.g., write CRC [64, 100],
chipkill [8, 37, 137] or even stronger rank-level ECC [64, 83, 167]).
Low-Probability Errors. Other main memory error mechanisms
exist that do not conform to our model, including time-dependent
errors such as DRAM variable retention time [76, 110, 124, 150, 153,
161, 178] and single-event upsets such as particle strikes [117]. In
general, these errors are either (1) inappropriate to address using
a profile-guided repair mechanism, e.g., single-event upsets that
do not repeat; or (2) rare or unpredictable enough that no realistic
amount of active profiling is likely to identify them, so they are left
to reactive profiling for detection and/or mitigation [150]. Identi-
fying low-probability errors is a general challenge for any error
profiler and is an orthogonal problem to our work. Prior approaches
to identifying low-probability errors during active (e.g., increas-
ing the probability of error [147]) or reactive (e.g., periodic ECC
scrubbing [10, 150]) profiling are complementary to our proposed
techniques and can be combined with HARP (e.g., during the active
profiling phase described in §6.2, or by strengthening the secondary
ECC as described in §6.3.2) to help identify low-probability errors.

2.5 Block Codes and Syndrome Decoding
Typical on-die ECC implementations use linear block codes [21,
59, 69, 98, 99, 121, 140, 162] whose operation can be summarized
using matrix arithmetic. In our work, we assume single-error cor-
recting (SEC) Hamming codes [49] that are adopted in modern
LPDDR4 [121, 140] and DDR5 [67] DRAM chips.9 This section
briefly summarizes the operation of an SEC Hamming code in the
context of on-die ECC. For further information, we refer the reader
to extensive literature on error-correction coding [31, 123, 154, 155].

2.5.1 Encoding and Decoding. A Hamming code with k data
bits andp parity-check bits is defined by a (k,k+p) generator matrix
G and a (p,k+p) parity-check matrixH such thatG ·HT = 0within

9Our analysis can theoretically generalize to stronger block codes (e.g., double-error
correcting BCH [16, 53]), but we leave such generalization to future work given that
such codes are currently unlikely to be used in latency-sensitive memory chips.

5

the finite field GF (2). Equation 1 gives example H andG matrices
that define a k = 4 SEC Hamming code.

GT =

[1 0 0 0 1 1 1
0 1 0 0 1 1 0
0 0 1 0 1 0 1
0 0 0 1 0 1 1

]
H =

[1 1 1 0 1 0 0
1 1 0 1 0 1 0
1 0 1 1 0 0 1

]
(1)

Fig. 3 illustrates how a system interfaces with a memory module
whose chip(s) use on-die ECC. To encode a k-bit dataword d , the
ECC encoder computes a (k + p)-bit codeword c as c = G · d . Upon
incurring raw bit error(s), we denote the erroneous codeword as c ′.
To decode c ′ into a post-correction dataword d ′, the ECC decoder
performs syndrome decoding, where a syndrome s is calculated as
s = H · c ′. If s is nonzero, one or more errors must be present, and
the bit position of the detected error can then be identified as the
particular column of H that matches s .

If an uncorrectable error occurs, s may inadvertently match a
parity-check matrix column that does not correspond to an actual
error. In this case, the ECC decoder might introduce an additional
error in the decoded data, which we refer to as a miscorrection.
Note that the memory controller may interface with one or more
memory chips at a time, potentially spreading a single data block
across multiple on-die ECC words. We discuss this further in §6.3.

Chip
I/O

Memory Module

Storage ArrayOn-Die ECC

d[k:0] ...

...

...

...

...

...

...

...
c[k+p:0]

cʹ[k+p:0]

dʹ[k:0]
Row

 B
ufferInternal Reads

...

...Internal Writes

ECC Decoder

ECC Encoder...

 Burst

M
em

ory C
h

ip

Memory
Controller

Data
Bus

...

Host System

To CPU

8

64
128 8

Data Beats

Figure 3: On-die ECC operation within a memory chip. Grey anno-
tations show example bit-widths of data transfers.

2.5.2 DesignDegrees of Freedom. When choosingH for a par-
ticular implementation, the designer is free to arrange its columns
at will. Recent work [142] shows that some column arrangements
can lead to more miscorrections than others. However, designers
may choose column arrangements based on circuit latency, energy,
or area concerns, regardless of each choice’s effect on reliability. In
our work, we assume that the code uses systematic encoding, which
requires thatH andG do not modify data bits during encoding (note
the identity submatrices in Equation 1) but does not otherwise con-
strain the column arrangement. This encoding greatly simplifies
the hardware encoding and decoding circuitry and is a realistic
assumption for low-latency main memory chips [181].

3 FORMALIZING ERROR PROFILING
We express error profiling as a statistical process to understand the
effects of on-die ECC. To this end, we first formalize the concepts
of errors and error profiling. Then, we examine how on-die ECC
changes the way that errors appear outside of the memory chip.

3.1 Representing the Probability of Error
We model memory as a one-dimensional bit-addressable array with
address space 𝒜. To describe errors within this address space, we
define two Boolean random variables Di and Ei that represent the
data stored in bit i ∈ 𝒜 and whether or not the bit experiences
an error, respectively. Based on our discussion in §2.4, we model

Ei as a Bernoulli random variable that is independent of Ej,i but
dependent on the data Di . In general, Ei can depend on the data
stored in other cells D j,i , which expresses how a bit’s probability
of error changes with the data stored in nearby cells. Equation 2
shows the resulting probability mass function, parameterized by p,
the probability that the bit will experience an error.

P(Ei = x |Di ,D j , · · ·) =

{
p(Di ,D j , · · ·) if x = 1
1 − p(Di ,D j , · · ·) if x = 0

(2)

In general, each bit has its own value of p depending on its intrinsic
error characteristics. For example, prior work [147] experimentally
demonstrates that p values are normally distributed across different
bits for DRAM data-retention errors, i.e., p ∼ N (µ,σ 2), with some
normal distribution parameters {µ,σ } that depend on the particular
memory chip and operating conditions such as temperature.

3.2 Incorporating On-Die ECC
With on-die ECC, we adjust our address space representation to
include both logical bit addresses 𝒜 as observed by the memory
controller and physical bit addresses ℬ within the memory storage
array. In general, |ℬ | > |𝒜| because ℬ includes addresses for parity-
check bits that are not visible outside of the memory chip. Next,
we introduce two additional Boolean random variables: Da (for
dataword) and Cb (for codeword) that refer to the data values of
logical bit a ∈ 𝒜 and physical bit b ∈ ℬ (i.e., before and after ECC
encoding), respectively. Boolean variables Ea and Rb represent
whether logical bit a and physical bit b experience post- and pre-
correction errors, respectively. Note that E and D represent the
same information from §3.1. We useC ′ and D ′ to refer to codeword
and dataword values, respectively, that may contain errors.

On-die ECC determines D ′ fromC ′ through syndrome decoding
(described in §2.5) using the ECC parity-check matrix H comprised
of columns H [k + p : 0]. The error syndrome is computed as s =
H [k + p : 0] · R[k + p : 0] (referred to as H · R to simplify notation).
Then, if s matches the i’th columnH [i], the ECC decoder flips the bit
at position i . Given that H is systematically encoded (discussed in
§2.5.1), c[k : 0] is equal tod[k : 0]. Therefore, a post-correction error
Ei (i.e., a mismatch between di and d ′i) can only occur in two cases:
(1) an uncorrected raw bit error at position i (i.e., Ri ∧ s , H [i]); or
(2) a miscorrection at position i (i.e., ¬Ri ∧ s = H [i].) We refer to
these two cases as direct and indirect errors, respectively. Equation 3
summarizes both cases that lead to a post-correction error.

P(Ei) = P(Ri ⊻ H · R = H [i]) (3)

Equation 3 shows that bit i’s probability of error depends not only
on that of its encoded counterpart Ri , but also on those of all other
codeword bits R[k + p : 0]. This means that on-die ECC introduces
statistical dependence between all bits in a given ECCword through
their mutual dependence on R. Furthermore, just as described in
§3.1, Ri itself depends on the data value stored in cell i (i.e., Ci). As
a result, bit i’s probability of error depends on both the data values
and the pre-correction errors present throughout the codeword.

Consequently, a given post-correction error Ei may only occur
when a particular combination of pre-correction errors occurs. This
is different from the case without on-die ECC, where Ei does not
depend on the data or error state of any other bit j , i . We conclude

6

that on-die ECC transforms statistically independent pre-correction
errors into ECC-dependent, correlated post-correction errors.

4 ON-DIE ECC’S IMPACT ON PROFILING
On-die ECC breaks the simple and intuitive assumption that profil-
ing for errors is the same as profiling each bit individually. In this
section, we identify three key challenges that on-die ECC introduces
for bit-granularity profiling.

4.1 Challenge 1: Combinatorial Explosion
§3.2 shows that the position of an indirect error depends on the
locations of all pre-correction errors R. This means that different
uncorrectable patterns of pre-correction errors can cause indirect
errors in different bits. In theworst case, every unique combination of
pre-correction errors within a set of at-risk bits can lead to different
indirect errors. This means that the set of bits that are at risk of
post-correction errors is combinatorially larger than the set of bits
at risk of pre-correction error.

As a concrete example, Fig. 4 shows a violin plot of each at-
risk bit’s per-bit probability of error (y-axis) when the codeword
contains a fixed number of bits at risk of pre-correction errors
(x-axis) that each fail with probability 0.5. Each violin shows the
distribution (median marked in black) of per-bit error probabilities
when simulating 70,000 ECC words for each of 1600 randomly-
generated (71, 64) Hamming code parity-check matrices assuming
a data pattern of 0xFF. We make two observations. First, the pre-
correction error probabilities are all 0.5 (by design). This means
that, without on-die ECC, all bits at risk of pre-correction error
are easy to identify, i.e., each bit will be identified with probability
p = 1 − 0.5N given N profiling rounds. For large N (e.g., N > 10,
where p > 0.999), the vast majority of bits will be identified.

2 3 4 5 6 7 8
Number of Pre-Correction Errors Per ECC Word

0.0

0.2

0.4

0.6

0.8

Pe
r-B

it
Pr

ob
ab

ilit
y

of
 P

os
t-C

or
re

ct
io

n
Er

ro
r Pre-Correction

Post-Correction

Figure 4: Distribution of each at-risk bit’s error probability before
and after application of on-die ECC.

Second, in contrast, the per-bit probabilities of post-correction
error exhibit a wide range. However, the probability density for
each violin is tightly concentrated at Y ≈ 0.4 for X = 3 and shifts
towards Y = 0 as the number of pre-correction errors increases.
This means that the bits at risk of post-correction errors become
harder to identify because they fail less often.

Table 2 shows the maximum number of bits at risk of post-
correction errors that can be caused by a fixed number of bits at
risk of pre-correction errors. This illustrates the worst-case scenario,
where every uncorrectable combination of pre-correction errors (i.e.,
pre-correction error pattern) causes a unique indirect error. We see
that n bits at risk of pre-correction errors can cause 2n − 1 unique

pre-correction error patterns. Of these, n are correctable error pat-
terns, leaving 2n − n − 1 uncorrectable pre-correction error patterns.
Assuming that each of these patterns introduces a unique indirect
error, the combination of bits at risk of direct and indirect error
leads to 2n − 1 bits at risk of post-correction errors. Therefore, we
conclude that on-die ECC exponentially increases the number of
at-risk bits that the profiler must identify.

Bits at risk of pre-correction errors n 1 2 3 4 8
Unique pre-correction error patterns 2n − 1 1 3 7 15 255
Uncorrectable pre-correction error patterns 2n − n − 1 0 2 4 11 247
Bits at risk of post-correction errors 2n − 1 1 3 7 15 255
Table 2: On-die ECC amplifies a few bits at risk of pre-correction
errors into exponentiallymanybits at risk of post-correction errors.

4.2 Challenge 2: Profiling without Feedback
Without on-die ECC, an at-risk bit is identified when the bit fails.
This means that every profiling round provides useful feedback
about which bits are and are not at risk of error. Unfortunately,
with on-die ECC, a bit at risk of post-correction errors can only be
identified when particular combination(s) of pre-correction errors
occur. This has two negative consequences.

First, because the profiler cannot observe pre-correction errors, it
does not know whether a particular combination of pre-correction
errors has been tested yet. Therefore, the profiler cannot draw
meaningful conclusions from observing a bit not to fail. Instead, the
profiler must pessimistically suspect every bit to be at risk of post-
correction errors, even after many profiling rounds have elapsed
without observing a given bit fail. Second, each ECC word can only
exhibit one pre-correction error pattern at a time (i.e., during any
given profiling round). This serializes the process of identifying any
two bits at risk of post-correction errors that fail under different
pre-correction error patterns.

As a result, no profiler that identifies at-risk bits based on ob-
serving post-correction errors can quickly identify all bits at risk
of post-correction errors. We refer to this problem as bootstrapping
because the profiler must explore different pre-correction error
patterns without knowing which patterns it is exploring. In §7.2.2,
we find that bootstrapping limits the profiler’s coverage of at-risk
bits to incremental improvements across profiling rounds.

4.3 Challenge 3: Multi-Bit Data Patterns
Designing data patterns that induce worst-case circuit conditions
is a difficult problem that depends heavily on the particular circuit
design of a given memory chip and the error mechanisms it is
susceptible to [26, 33, 36, 75, 125, 126]. Without on-die ECC, a bit
can fail only in one way, i.e., when it exhibits an error. Therefore,
the worst-case pattern needs to only consider factors that affect
the bit itself (e.g., data values stored in the bit and its neighbors).

Unfortunately, with on-die ECC, a given post-correction error
can potentially occur with multiple different pre-correction error
patterns. Therefore, the worst-case data pattern must both (1) ac-
count for different ways in which the post-correction error can
occur; and (2) for each way, consider the worst-case conditions for
the individual pre-correction errors to occur simultaneously. This is
a far more complex problem than without on-die ECC [41, 44], and
in general, there may not even be a single worst-case data pattern

7

that exercises all possible cases in which a given post-correction
error might occur. To our knowledge, no prior work has developed
a general solution to this problem, and we identify this as a key
direction for future research.

5 ADDRESSING THE THREE CHALLENGES
We observe that all three profiling challenges stem from the lack of
access that the profiler has into pre-correction errors. Therefore, we
conclude that some transparency into the on-die ECC mechanism
is necessary to enable practical error profiling in the presence of
on-die ECC. This section discusses options for enabling access to
pre-correction errors and describes our design choices for HARP.

5.1 Necessary Amount of Transparency
To reduce the number of changes we require from the memory
chip, we consider the minimum amount of information that the
profiler needs to make error profiling as easy as if there were no
interference from on-die ECC. To achieve this goal, we examine
the following two insights that are derived in §3.2.
(1) Post-correction errors arise from either direct or indirect errors.
(2) The number of concurrent indirect errors is limited to the cor-

rection capability of on-die ECC.
First, we observe that it is not necessary for the profiler to have

full transparency into the on-die ECC mechanism or pre-correction
errors. If all bits at risk of direct errors can be identified, all remain-
ing indirect errors are upper-bounded by on-die ECC’s correction
capability. Therefore, the indirect errors can be safely identified
from within the memory controller, e.g., using a reactive profiler.

Second, we observe that the profiler can determine exactly which
pre-correction errors occurred within the data bits (though not the
parity-check bits) simply by knowing at which bit position(s) on-
die ECC performed a correction operation. This is because the
data bits are systematically encoded (as explained in §2.5.2), so
their programmed values must match their encoded values. By
observing which bits experienced direct error(s), the profiler knows
which pre-correction errors occurred within the encoded data bits.

Based on these observations, we require that the profiler be able
to identify which direct errors occur on every access, including
those that on-die ECC corrects. Equivalently, on-die ECC may ex-
pose the error-correction operation that it performs so that the
profiler can infer the direct errors from the post-correction data.

5.2 Exposing Direct Errors to the Profiler
We consider two different ways to inform the profiler about pre-
correction errors within the data bits.
(1) Syndrome on Correction.On-die ECC reports the error syndrome

calculated on all error correction events, which corresponds to
the bit position(s) that on-die ECC corrects.

(2) Decode Bypass. On-die ECC provides a read access path that
bypasses error correction and returns the raw values stored in
the data portion of the codeword.

We choose to build upon decode bypass because we believe it to
be the easiest to adopt for three key reasons. First, there exists
precedent for similar on-die ECC decode bypass paths from both
academia [43] and industry [13] with trivial modifications to in-
ternal DRAM hardware, and an on-die ECC disable configuration

register is readily exposed in certain DRAM datasheets [7]. Second,
prior works already reverse-engineer both the on-die ECC algo-
rithm [145] and raw bit error rate [146] without access to raw data
bits or insight into the on-die ECC mechanism, so we do not believe
exposing a decode bypass path reveals significantly more sensitive
information. Third, we strongly suspect that such a bypass path al-
ready exists for post-manufacturing testing [173]. This is reasonable
because systematically-encoded data bits can be read out directly
without requiring further transformation. If so, exposing this capa-
bility as a feature would likely require minimal engineering effort
for the potential gains of new functionality. However, we recognize
that the details of the on-die ECC implementation depend on the
particular memory chip design, and it is ultimately up to the system
designer to choose the most suitable option for their system.

5.3 Applicability to Other Systems
Any bit-granularity profiler operating without visibility into the
pre-correction errors suffers form the three profiling challenges
we identify in this work. Even a hypothetical future main memory
system whose memory chips and controllers are designed by the
same (or two trusted) parties will need to account for and overcome
these profiling challenges when incorporating a repair mechanism
that relies on practical and effective profiling.

6 HYBRID ACTIVE-REACTIVE PROFILING
We introduce the Hybrid Active-Reactive Profiling (HARP) algo-
rithm, which overcomes the three profiling challenges introduced
by on-die ECC discussed in §5. HARP separates profiling into active
and reactive phases that independently identify bits at risk of direct
and indirect errors, respectively.

6.1 HARP Design Overview
Fig. 5 illustrates the high-level architecture of a HARP-enabled
system, with the required error-mitigation resources shown in blue.
Thememory chip exposes a read operationwith the ability to bypass
on-die ECC and return the raw data (though not parity-check)
bits. The memory controller contains a repair mechanism with an
associated error profile alongside both an active and reactive profiler.
During active profiling, the active profiler uses the ECC bypass path
to search for bits at risk of direct errors. Because the active profiler
interfaces directly with the raw data bits, its profiling process is
equivalent to profiling a memory chip without on-die ECC. If and
when direct errors are observed, the active profiler communicates
their locations to the repair mechanism’s error profile.

After active profiling is complete, the reactive profiler (i.e., a
secondary ECC code with correction capability at least as strong as
that of on-die ECC) continuously monitors for bits at risk of indirect
errors. The reactive profiler is responsible only for identifying bits
at risk of indirect errors the first time that they fail. If and when
the reactive profiler identifies an indirect error, the location of the
error is recorded to the error profile for subsequent repair.

6.2 Active Profiling Implementation
The active profiler follows the general round-based algorithm em-
ployed by state-of-the-art error profilers, as discussed in §1. Each

8

round of testing first programs memory cells with a standard mem-
ory data pattern that is designed to maximize the chance of ob-
serving errors (e.g., 0xFF , 0x00, random data) [4, 77, 87, 110, 126].
Patterns may or may not change across testing rounds depending
on the requirements of the particular data pattern. Once sufficiently
many rounds are complete, the set of at-risk bits identified com-
prises the union of all bits identified across all testing rounds.

We assume that the active profiler achieves full coverage of bits at
risk of direct errors by leveraging any or all of the worst-case testing
techniques developed throughout prior works [77, 79, 126, 127, 147].
This is feasible because the active profiler can read and write to the
raw data bits exploiting the ECC bypass path and the systematically-
encoded data bits, respectively. Therefore, the active profiler can
use techniques developed for memory chips without on-die ECC.

6.3 Reactive Profiling Implementation
HARP requires that the secondary ECC have correction capability
at least as high as the number of indirect errors that on-die ECC
can cause at one time. This requires the layout of secondary ECC
words to account for the layout of on-die ECC words: the two must
combine in such a way that every on-die ECC word is protected
with the necessary correction capability by the secondary ECC. For
example, with a single-error correcting on-die ECC that uses 128-
bit words, the memory controller must ensure that every 128-bit
on-die ECC word is protected with at least single-error correction.

How this is achieved depends heavily on a given system’s mem-
ory architecture. For example, depending on the size of an on-die
ECC word and how many memory chips the memory controller
interfaces with, on-die ECC words may be split across different data
transfers. In this case, the system designer must choose a design
that matches their design goals, e.g., dividing secondary ECC words
across multiple transfers (which introduces its own reliability chal-
lenges [43]), or interleaving secondary ECC words across multiple
on-die ECC words (which could require stronger secondary ECC).

Without loss of generality, we assume that thememory controller
interfaces with a single memory chip at a time (e.g., similar to some
LPDDR4 systems [65]) and provisions a single-error correcting code
per on-die ECC word. Such a system is sufficient for demonstrating
the error profiling challenges that we address in this work.Matching
the granularity of secondary and on-die ECC words for arbitrary
systems is not a problem unique to our work since any secondary
ECC that is designed to account for the effects of on-die ECC must
consider how the two interact [21, 43]. Therefore, we leave a general
exploration of the tradeoffs involved to future work.

6.3.1 HARP-U and HARP-A.. We introduce two variants of
HARP: HARP-A and HARP-U, which are aware and unaware of the

on-die ECC parity-check matrix H , respectively. HARP-A uses this
knowledge to precompute10 bits at risk of indirect error given the
bits at risk of direct error that are identified during active profil-
ing. HARP-A does not provide benefits over HARP-U during active
profiling. However, HARP-A reduces the number of bits at risk of
indirect error that remain to be identified by reactive profiling.

6.3.2 Increasing the Secondary ECC Strength. The sec-
ondary ECC is used for reactive profiling and must provide equal
or greater correction capability than on-die ECC to safely identify
indirect errors. Current on-die ECC designs are limited to simple
single-error correcting codes due to area, energy, and latency con-
straints within the memory die [43, 121, 162], so the secondary ECC
can be correspondingly simple. However, if either (1) future on-die
ECC designs become significantly more complex; or (2) the system
designer wishes to address other failure modes (e.g., component-
level failures) using the secondary ECC, the system designer will
need to increase the secondary ECC strength accordingly. Whether
profile-based repair remains a feasible error-mitigation strategy in
this case is ultimately up to the system designer and their reliability
goals, so we leave further exploration to future work.

6.4 Limitations
HARP relies on the active profiler to achieve full coverage of bits
at risk of direct errors so that the reactive profiler never observes
a direct error (i.e., the reactive profiler’s correction capability is
never exceeded). Consequently, if the active profiler fails to achieve
full coverage, the reactive profiler may experience indirect errors
in addition to direct error(s) missed by active profiling.

We acknowledge this as a theoretical limitation of HARP, but we
do not believe it restricts HARP’s potential impact to future designs
and scientific studies. This is because achieving full coverage of
at-risk bits without on-die ECC is a long-standing problem that is
complementary to our work. Prior works have studied this problem
in detail [76, 79, 147, 150], and any solution developed for chips
without on-die ECC can be immediately applied to HARP’s active
profiling phase, effectively reducing the difficulty of profiling chips
with on-die ECC to that of chips without on-die ECC.

7 EVALUATIONS
In this section, we study howHARP’s coverage of direct and indirect
errors changes with different pre-correction error counts and per-
bit error probabilities to both (1) demonstrate the effect of the three
profiling challenges introduced by on-die ECC and (2) show that
HARP overcomes the three challenges.

10Using the methods described in detail in prior work [145].

Repair
Mechanism Error-Prone

Data Store

Memory Chip

read

Memory Controller

On-Die
ECC

On-Die
ECC

read with ECC bypass

write

on detected error

to/from
CPU repaired read data

write data
Active
Profiler

Reactive Profiler
(Secondary ECC) Error Profile

Figure 5: Block diagram summarizing the error-mitigation resources (in blue) of a HARP-enabled system.

9

7.1 Evaluation Methodology
We evaluate error coverage in simulation because, unlike with a
real device, we can accurately compute error coverage using precise
knowledge of which errors are and are not possible. This section
describes our simulation methodology.

7.1.1 Baselines for Comparison. We compare HARP-U and
HARP-A with two baseline profiling algorithms that use multiple
rounds of testing with different data patterns to identify at-risk bits
based only on observing post-correction errors.
(1) Naive, which represents the vast majority of prior profilers that

operate without knowledge of on-die ECC [11, 12, 24, 27, 29,
30, 40, 48, 76–79, 82, 84, 86, 87, 103, 104, 109–111, 132, 145, 147,
149, 150, 159, 168, 171, 183] (described in §6.2).

(2) BEEP, the profiling algorithm supported by the reverse-
engineering methodology BEER [145]. BEEP carefully con-
structs data patterns intended to systematically expose post-
correction errors based on having reverse-engineered the on-
die ECC parity-check matrix. We follow the SAT-solver-based
methodology as described by [145] and use a random data pat-
tern before the first post-correction error is confirmed.

7.1.2 Simulation Strategy. We extend the open-source DRAM
on-die ECC analysis infrastructure released by prior work [1, 145]
to performMonte-Carlo simulations of DRAM data retention errors.
We release our simulation tools on Zenodo [148] and Github [3].
We simulate error injection and correction using single-error cor-
recting Hamming codes [49] representative of those used in DRAM
on-die ECC (i.e., (71, 64) [59, 137] and (136, 128) [98, 99, 121, 140]
code configurations). All presented data is shown for a (71, 64)
code, and we verified that our observations hold for longer (136,
128) codes. We simulate 1,036,980 total ECC words across 2769
randomly-generated parity-check matrices over ≈20 days of simu-
lation time (discussed in §A.8.2). For each profiler configuration, we
simulate 128 profiling rounds because this is enough to understand
the behavior of each configuration (e.g., the shapes of each curve
in Fig. 6), striking a good balance with simulation time.

We inject errors according to the model discussed in §2.4 to
simulate the effect of uniform-random, data-dependent errors. We
assume that all bits are true-cells [96, 110] that experience errors
only when programmed with data ‘1’, which is consistent with
experimental observations made by prior work [96, 145]. To study
how varying error rates impact profiling, we simulate bit errors
with Bernoulli probabilities of 1.0, 0.75, 0.5, and 0.25 and separate
our results based on the total number of pre-correction errors n
injected into a given ECC word. Using this approach, one can easily
determine the effect of an arbitrary raw bit error rate by summing
over the individual per-bit error probabilities.

We define coverage as the proportion of all at-risk bits that are
identified. We calculate coverage using the Z3 SAT solver [35], com-
puting the total number of post-correction errors that are possible
for a given (1) parity-check matrix; (2) set of pre-correction errors;
and (3) (possibly empty) set of already-discovered post-correction
errors. Note that a straightforward computation of coverage given
on-die ECC is extremely difficult for data-dependent errors: each
data pattern programs the parity-check bits differently, thereby pro-
voking different pre-correction error patterns. Therefore, using the

SAT solver, we accurately measure the bit error rate of all possible
at-risk bits across all possible data patterns.

We simulate three different data patterns to exercise data-
dependent behavior: random, charged (i.e., all bits are ‘1’s), and
checkered (i.e., consecutive bits alternate between ‘0’ and ‘1’). For
the random and checkered data patterns, we invert the data pat-
tern each round of profiling. For the random pattern, we change
the random pattern after every two profiling rounds (i.e., after both
the pattern and its inverse are tested). We ensure that each profiler
is evaluated with the exact same set of ECC words, pre-correction
error patterns, and data patterns in order to preserve fairness when
comparing coverage values. Unless otherwise stated, all data pre-
sented uses the random pattern, which we find performs on par or
better than the static charged and checkered patterns that do not
explore different pre-correction error combinations.

7.2 Active Phase Evaluation
We study the number of profiling rounds required by each profiling
algorithm to achieve coverage of direct errors. We omit HARP-A
because its coverage of direct errors is equal to that of HARP-U.

7.2.1 Direct Error Coverage. Fig. 6 shows the coverage of bits
at risk of direct errors that each profiler cumulatively achieves
(y-axis) over 128 profiling rounds (x-axis) assuming four differ-
ent values of pre-correction errors per ECC word (2, 3, 4, and 5).
We report results for four different per-bit error probabilities of
the injected pre-correction errors (25%, 50%, 75%, 100%). For each
data point, we compute coverage as the proportion of at-risk bits
identified out of all at-risk bits across all simulated ECC words.

1 4 16 64

25%

0.0

0.5

1.0

Di
re

ct
 E

rro
r C

ov
er

ag
e

1 4 16 64

50%

1 4 16 64

75%

Pre-Correction Errors
5
4

3
2

1 4 16 64

100%

HARP-U
Naive
BEEP

Per-Bit Probability of Pre-Correction Error

Number of Profiling Rounds

Figure 6: Coverage of bits at risk of direct errors.

Wemake two observations. First, HARP consistently and quickly
achieves full coverage, regardless of the number or per-bit error
probabilities of the injected pre-correction errors. This is because
HARP bypasses on-die ECC correction, identifying each at-risk bit
independently, regardless of which error occurs in which testing
round. In contrast, both Naive and BEEP (1) require more testing
rounds to achieve coverage parity with HARP and (2) exhibit sig-
nificant dependence on the number of pre-correction errors. This
is a direct result of on-die ECC: each post-correction error depends
on particular combination(s) of pre-correction errors, and achiev-
ing high coverage requires these combinations to occur in distinct
testing rounds. We conclude that that HARP effectively overcomes
the first profiling challenge by directly observing pre-correction
errors, while Naive and BEEP must both rely on uncorrectable error
patterns to incrementally improve coverage in each round.

10

Second, although, HARP and Naive both eventually achieve full
coverage, BEEP fails to do so in certain cases. This is because BEEP
does not explore all pre-correction error combinations necessary to
expose each bit at risk of direct errors. We attribute this behavior
to a nuance of the BEEP algorithm: BEEP crafts data patterns that
increase the likelihood of indirect errors. Unfortunately, these pat-
terns are slow to explore different combinations of pre-correction
errors, which leads to incomplete coverage. This is consistent with
prior work [145], which finds that BEEP exhibits low coverage
when pre-correction errors are sparse or occur with low probability.
We find that Naive also fails to achieve full coverage when using
static data patterns (e.g., checkered) for the same reason.

7.2.2 Bootstrapping Analysis. Fig. 7 shows the distribution
(median marked with a horizontal line) of the number of profiling
rounds required for each profiler to observe at least one direct error
in each ECC word. If no post-correction errors are identified, we
conservatively plot the data point as requiring 128 rounds, which
is the maximum number of rounds evaluated (discussed in §7.1.2).
The data illustrates the difficulty of bootstrapping because observ-
ing any post-correction error with on-die ECC requires a specific
combination of pre-correction errors to occur.

2 3 4 5

Naive

0

32

64

96

128

Nu
m

be
r o

f R
ou

nd
s

Sp
en

t B
oo

ts
tra

pp
in

g

2 3 4 5

BEEP

2 3 4 5

HARP-U
Pre-Correction Error
 Per-Bit Probability

25%
50%
75%
100%

Number of Pre-Correction Errors Injected

Figure 7: Distribution of the number of profiling rounds required to
identify the first direct error across all simulated ECC words.

We make three observations. First, we see that HARP identifies
the first error far more quickly than Naive or BEEP profiling across
all configurations. Second, HARP never fails to identify at least
one error within 128 rounds. Third, in contrast, BEEP sometimes
cannot identify an error at all due to a combination of (1) the low
per-bit pre-correction error probability and (2) the bootstrapping
problem (i.e., more testing rounds does not guarantee higher cover-
age unless those rounds explore different uncorrectable patterns).
We conclude that HARP effectively addresses the bootstrapping
challenge by directly observing pre-correction errors instead of
relying on exploring different uncorrectable error patterns.

7.3 Reactive Phase Evaluation
In this section, we study each error profiler’s coverage of bits at risk
of indirect errors and examine the correction capability required
from the secondary ECC to safely identify the at-risk bits remaining
after active profiling. It is important to note that, unlike HARP,
neither Naive nor BEEP profiling achieve full coverage of bits at risk
of direct errors for all configurations. In such cases, multi-bit errors
can occur during reactive profiling that are not safely identified by

a single-error correcting code (studied in §7.3.2), regardless of the
profiler’s coverage of bits at risk of indirect errors.

7.3.1 Indirect Error Coverage. Fig. 8 shows the proportion of
all bits that are at risk of indirect errors that each profiler has missed
per ECCword throughout 128 rounds of profiling. This is equivalent
to the number of at-risk bits that reactive profiling has to identify.
We evaluate an additional configuration, HARP-A+BEEP, which
employs BEEP to identify the remaining at-risk bits once HARP-A
has identified all bits at risk of direct errors.

1 4 16 64

2

0

5

10

M
iss

ed
 In

di
re

ct
 E

rro
rs

pe
r E

CC
 W

or
d

Per-Bit Probability
 of Pre-Correction
 Error

25%
50%
75%
100%

1 4 16 64

3
HARP-A
HARP-U
Naive
BEEP
HARP-A+BEEP

1 4 16 64

4

1 4 16 64

5
Number of Pre-Correction Errors per ECC Word

Number of Profiling Rounds

Figure 8: Coverage of bits at risk of indirect errors.

Wemake three observations. First, HARP-U does not identify any
bits at risk of indirect errors11 because it bypasses the on-die ECC
correction process that causes indirect errors. In contrast, HARP-A
quickly identifies a subset of all bits at risk of indirect errors by
predicting them from the identified direct errors. Note that HARP-A
cannot identify all bits at risk of indirect errors because doing so
would require knowing which parity-check bits are at risk of error,
which the on-die ECC bypass path does not reveal.

Second, combining HARP-A with BEEP effectively overcomes
HARP-A’s inability to identify pre-correction errors within the
parity-check bits. This is because HARP-A+BEEP synergistically
combines (1) HARP’s ability to quickly identify bits at risk of direct
errors with (2) BEEP’s ability to exploit known at-risk bits to expose
others. The combined configuration quickly identifies bits at risk
of indirect errors, achieving coverage similar to Naive and BEEP
profiling in less than half the number of profiling rounds.

Third, both Naive and BEEP achieve relatively high coverage of
indirect errors after many (i.e., > 64) rounds compared to HARP-U
and HARP-A. This is because both Naive and BEEP continually
explore different uncorrectable error patterns, steadily exposing
more and more indirect errors. BEEP achieves higher coverage
because its algorithm deliberately seeks out pre-correction error
combinations that are more likely to cause post-correction errors,
thereby exposing more indirect errors in the long run.

We conclude that knowing the on-die ECC parity-check matrix
helps HARP-A and BEEP identify bits at risk of indirect errors,
thereby reducing the number of indirect errors that must be identi-
fied by by the secondary ECC during reactive profiling.

7.3.2 Secondary ECCCorrectionCapability. Fig. 9 shows the
worst-case (i.e., maximum) number of post-correction errors that
can occur simultaneously within an ECC word after active profiling.
11Except for a small number of direct and indirect errors that overlap.

11

This number is the correction capability required from secondary
ECC to safely perform reactive profiling.
Maximum Error Count. Fig. 9a shows a normalized histogram
of the maximum number of post-correction errors that can occur
simultaneously within each simulated ECC word given all at-risk
bits missed after 128 rounds of active profiling. We observe that
both HARP-U and HARP-A exhibit at most one post-correction
error across all configurations. This is because HARP identifies all
bits at risk of direct errors within 128 profiling rounds (shown in
Fig. 6), so only one error may occur at a time (i.e., an indirect error).
In contrast, both Naive and BEEP are susceptible to multi-bit errors.
In particular, BEEP’s relatively low coverage of bits at risk of direct
errors means that many multi-bit error patterns remain possible.
We conclude that, after 128 rounds of active profiling, a single-error
correcting secondary ECC is sufficient to perform reactive profiling
for HARP but insufficient to do so for Naive and BEEP.
Maximum Error Count. Fig. 9b shows howmany active profiling
rounds are required to ensure that no more than an x-axis value of
post-correction errors can occur simultaneously in a single ECC
word during reactive profiling. We conservatively report results
for the 99th percentile of all simulated ECC words because neither
Naive nor BEEP achieve full coverage of bits at risk of direct errors
for all configurationswithin 128 profiling rounds. In caseswhere 128
profiling rounds are insufficient to achieve 99th-percentile values,
we align the bar with the top of the plot.

We make two observations. First, both HARP configurations
perform significantly faster than Naive and BEEP. For example,
with a 50% pre-correction per-bit error probability, HARP en-
sures that no more than one post correction error can occur in
20.6%/36.4%/52.9%/62.1% of the profiling rounds required by Naive
given 2/3/4/5 pre-correction errors. This is because HARP quickly
identifies all bits at risk of direct errors, while Naive and BEEP both
either (1) take longer to do so; or (2) fail to do so altogether (e.g.,
for the 100th percentile at a 50% per-bit error probability). Second,
BEEP performs much worse than any other profiler because it ex-
hibits extremely low coverage of bits at risk of direct error (studied
in §7.2.1). We conclude that achieving high coverage of bits at risk
of direct errors is essential for minimizing the correction capability
of the secondary ECC.

7.4 Case Study: DRAM Data Retention
In this section, we show how error profiling impacts end-to-end
reliability. We study the bit error rate of a system that uses a
bit-granularity repair mechanism (e.g., such as those discussed
in §2.2) to reduce the DRAM refresh rate, which prior work
shows can significantly improve overall system performance and
energy-efficiency [111, 147, 150, 171] and enable continued den-
sity scaling [136]. We assume that data-retention errors follow
the error model described in §2.4 (i.e., uniformly with a fixed raw
bit error rate, which is consistent with prior experimental stud-
ies [12, 47, 85, 146, 147, 161, 166]) and that the repair mechanism
perfectly repairs any at-risk bits that are identified by either active
or reactive profiling. We assume a (71, 64) SEC on-die ECC code
and a secondary ECC capable of detecting and correcting a single
error in each on-die ECC word during reactive profiling.

Fig. 10 illustrates the fraction of all bits that are at risk of post-
correction errors (i.e., the bit error rate) before (Fig. 10, left) and
after (Fig. 10, right) secondary ECC is applied (i.e., before and after
performing reactive profiling) given an x-axis number of active
profiling rounds. Each line marker shows a different data-retention
RBER (e.g., due to operating at different refresh rates).

We make three observations. First, all profilers in Fig. 10 (left)
behave consistently with the coverage analysis of §7.2.1. HARP
quickly identifies all bits at risk of direct error, but leaves indirect
errors to be identified by reactive profiling. Both Naive and BEEP
slowly explore different combinations of pre-correction errors, with
Naive steadily reducing the BER given more profiling rounds while
BEEP fails to do so.

Second, Fig. 10 (left) shows the benefit of HARP-A knowing the
on-die ECC function. While both HARP-U and HARP-A quickly
identify all bits at risk of direct errors, HARP-A also identifies bits
at risk of indirect errors, thereby considerably reducing the overall
BER (and therefore, the total number of bits) that remain to be
identified by reactive profiling.

Third, Fig. 10 (right) shows that both HARP12 and Naive reach a
BER of zero after sufficiently many profiling rounds, though Naive

12HARP-A is not shown in Fig. 10 (right) because it exhibits identical BER to HARP-U
after applying secondary ECC (i.e., because both profilers have identical coverage of
bits at risk of direct errors).

2

0.0
0.5
1.0 Naive

BEEP
HARP-U
HARP-A

3 4 5

0.0
0.5
1.0

0.0
0.5
1.0

0 1 2 3 4 5 60.0
0.5
1.0

0 1 2 3 4 5 6 0 1 2 3 4 5 6 0 1 2 3 4 5 6

Number of Pre-Correction Errors per ECC Word

Maximum Number of Simultaneous Post-Correction Errors Possible

Fr
ac

tio
n

of
 E

CC
 W

or
ds

Pre-Correction Error
Per-Bit Probability

100%
75%

50%
25%

(a) Normalized histogram of the maximum number of simultane-
ous post-correction errors (x-axis) possible across all simulated ECC
words after 128 rounds of profiling.

2

0
32
64
96 Naive

BEEP
HARP-U
HARP-A

3 4 5

0
32
64
96

0
32
64
96

1 2 3 4 5 6
0

32
64
96

1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6

Number of Pre-Correction Errors per ECC Word

Maximum Number of Simultaneous Post-Correction Errors Possible

Nu
m

be
r o

f P
ro

fil
in

g
Ro

un
ds Pre-Correction Error

Per-Bit Probability
100%

75%
50%

25%

(b) Number of profiling rounds (y-axis) required to achieve 99th-
percentile values of the maximum number of simultaneous post-
correction errors possible (x-axis).

Figure 9: Maximum number of simultaneous post-correction errors possible given all at-risk bits missed after 128 rounds of profiling.

12

1 4 16 64

25%

10 14

10 10

10 6

BE
R

Be
fo

re
Re

ac
tiv

e
Pr

of
ilin

g

1 4 16 64

50%

1 4 16 64

75%

BEEP
HARP-A
HARP-U
Naive

1 4 16 64

100%

RBER
10 4

10 6

10 8

Per-Bit Probability of Pre-Correction Error

Number of Profiling Rounds
1 4 16 64

25%

10 17

10 13

10 9

BE
R

Af
te

r
Re

ac
tiv

e
Pr

of
ilin

g

1 4 16 64

50%

1 4 16 64

75%

BEEP
HARP-U
Naive

1 4 16 64

100%

RBER
10 4

10 6

10 8

Per-Bit Probability of Pre-Correction Error

Number of Profiling Rounds

Figure 10: Data-retention bit error rate (BER) using an ideal repair mechanism before (left) and after (right) applying the secondary ECC.

takes significantly more profiling rounds to do so (e.g., 3.7× for
a per-bit pre-correction error probability of 75%). This behavior
is consistent with the fact that both profilers eventually achieve
full coverage of bits at risk of direct error (shown in §7.2.1) In
contrast, BEEP fails to reach a zero probability value because it
fails to achieve full coverage of bits at risk of direct error. Note that
HARP-U immediately identifies all bits at risk of direct errors in the
first profiling round with a per-bit pre-correction error probability
of 100%, so it is not visible in the rightmost plot.

We conclude that HARP effectively identifies all bits at-risk of
error faster than the baseline profilers, thereby enabling the repair
mechanism to safely operate at the evaluated raw bit error rates.
Although this case study uses a simple data-retention error model
that does not include low-probability errors or other failure modes
(discussed in §2.4), it demonstrates (1) the importance of a prac-
tical and effective error profiling algorithm in enabling a repair
mechanism to mitigate errors; and (2) the advantages that HARP
provides in an end-to-end setting by overcoming the error profiling
challenges introduced by on-die ECC.

8 RELATEDWORK
To our knowledge, this is the first work to (i) conduct an analytical
study of how system-level error profiling interacts with on-die
ECC, and (ii) propose a bit-granularity error profiling algorithm
to support memory chips with on-die ECC. Main memory error
profiling is a long-standing and difficult problem that prior works
have tackled in many different ways. In our work, we focus on error
profiling algorithms in the context of on-die ECC. We briefly review
related works which we already compared to in prior sections.
Profiling Without On-die ECC. Prior works propose various
error profiling algorithms in the context of DRAM [11, 12, 24, 27,
29, 30, 40, 76–79, 82, 84, 86, 87, 103, 104, 109–111, 132, 145, 147,
150, 159, 171] and emerging main memory technologies such as
PCM and STT-RAM [48, 149, 168, 183]. To our knowledge, none of
these works identify or address the effects that on-die ECC has on
error profiling. Furthermore, many of the insights and/or solutions
developed by these works (e.g., algorithms for identifying low-
probability errors [77, 147, 149, 150, 159]) are complementary to
our work and can be integrated with HARP (e.g., during active
profiling) to improve error coverage.
Profiling With On-die ECC. To our knowledge, only two
works [145, 146] study how on-die ECC impacts memory error
characterization and profiling in detail. Unfortunately, neither work

identifies the challenges that on-die ECC introduces for error pro-
filing. Of these works, only BEEP [145] is a profiling algorithm
that accounts for on-die ECC. However, BEEP focuses on reverse-
engineering pre-correction error locations using a slow algorithm
that we show is not well suited for identifying bits at risk of post-
correction error and still suffers from the three profiling challenges.
In contrast, we comprehensively study the three key challenges
that on-die ECC introduces for bit-granularity error profiling (§4),
which we address by proposing and evaluating HARP.

9 CONCLUSION
We study how on-die ECC affects memory error profiling and iden-
tify three key challenges that it introduces: on-die ECC (1) exponen-
tially increases the number of at-risk bits the profiler must identify;
(2) makes individual at-risk bits more difficult to identify; and (3)
interferes with commonly-used memory data patterns. To over-
come these three challenges, we introduce Hybrid Active-Reactive
Profiling (HARP), a new bit-granularity error profiling algorithm
that enables practical and effective error profiling for memory chips
that use on-die ECC. HARP exploits the key idea that on-die ECC
introduces two different sources of post-correction errors: (1) direct
errors that result from pre-correction errors within the data portion
of the ECC codeword; and (2) indirect errors that are a result of
the on-die ECC correction process. If all bits at risk of direct error
are identified, the number of concurrent indirect errors is upper-
bounded by the correction capability of on-die ECC. Therefore,
HARP uses simple modifications to the on-die ECC mechanism to
quickly identify bits at risk of direct errors and relies on a secondary
ECC within the memory controller to safely identify indirect er-
rors. Our evaluations show that HARP achieves full coverage of all
at-risk bits in memory chips that use on-die ECC faster than prior
approaches to error profiling. We hope that the studies, analyses,
and ideas we provide in this work will enable researchers and prac-
titioners alike to think about and overcome the challenge of how to
handle error detection and correction across the hardware-software
stack in the presence of on-die ECC.

ACKNOWLEDGMENTS
We thank the anonymous reviewers of MICRO 2021 for their feed-
back and the SAFARI Research Group members for their feedback
and the stimulating intellectual environment they provide. We ac-
knowledge the generous gift funding provided by our industrial
partners: Google, Huawei, Intel, Microsoft, and VMware.

13

REFERENCES
[1] BEER Source Code. https://github.com/CMU-SAFARI/BEER.
[2] EINSim Source Code. https://github.com/CMU-SAFARI/EINSim.
[3] HARP Source Code. https://github.com/CMU-SAFARI/HARP.
[4] R Dean Adams. High Performance Memory Testing: Design Principles, Fault

Modeling and Self-Test. Springer SBM. 2002.
[5] Zaid Al-Ars. DRAM Fault Analysis and Test Generation. Ph.D. Dissertation. TU

Delft. 2005.
[6] Alaa R Alameldeen, Ilya Wagner, Zeshan Chishti, Wei Wu, Chris Wilkerson,

and Shih-Lien Lu. Energy-Efficient Cache Design Using Variable-Strength
Error-Correcting Codes. ISCA. 2011.

[7] Alliance Memory. 2Gb/4Gb/8Gb LPDDR4. Alliance Memory. 2020. Rev. 1.0.
[8] AMD. BKDG for AMD NPT Family 0Fh Processors. http://developer.amd.com/

wordpress/media/2012/10/325591.pdf. 2009.
[9] Dmytro Apalkov, Alexey Khvalkovskiy, Steven Watts, Vladimir Nikitin, Xueti

Tang, Daniel Lottis, et al. Spin-Transfer Torque Magnetic Random Access
Memory (STT-MRAM). JETC. 2013.

[10] Manu Awasthi, Manjunath Shevgoor, Kshitij Sudan, Bipin Rajendran, Rajeev
Balasubramonian, and Viii Srinivasan. Efficient Scrub Mechanisms for Error-
Prone Emerging Memories. In HPCA. 2012.

[11] Angelo Bacchini, Marco Rovatti, Gianluca Furano, and Marco Ottavi. Charac-
terization of Data Retention Faults in DRAM Devices. In DFT. 2014.

[12] Seungjae Baek, Sangyeun Cho, and Rami Melhem. Refresh Now and Then. In
TC. 2014.

[13] Kuljit S. Bains, Rajat Agarwal, and Jongwon Lee. Read Retry To Selectively
Disable On-Die ECC. US Patent Application 20,200,278,906. 2020.

[14] Michael A Bajura, Younes Boulghassoul, Riaz Naseer, Sandeepan DasGupta,
Arthur F Witulski, Jeff Sondeen, et al. Models and Algorithmic Limits for an
ECC-Based Approach To Hardening Sub-100-nm SRAMs. Trans. on Nucl. Sci.
2007.

[15] Leonardo Bautista-Gomez, Ferad Zyulkyarov, Osman Unsal, and Simon
McIntosh-Smith. Unprotected Computing: A Large-Scale Study of DRAM Raw
Error Rate on a Supercomputer. In SC. 2016.

[16] Raj Chandra Bose and Dwijendra K Ray-Chaudhuri. On a Class of Error Cor-
recting Binary Group Codes. Information and Control. 1960.

[17] Geoffrey W Burr, Matthew J Breitwisch, Michele Franceschini, Davide Garetto,
Kailash Gopalakrishnan, Bryan Jackson, et al. Phase Change Memory Technol-
ogy. J Vac Sci Technol B. 2010.

[18] Yu Cai, Saugata Ghose, Erich F Haratsch, Yixin Luo, and Onur Mutlu. Error
Characterization, Mitigation, and Recovery In Flash-Memory-Based Solid-State
Drives. Proc. IEEE. 2017.

[19] Yu Cai, Saugata Ghose, Erich F Haratsch, Yixin Luo, and Onur Mutlu. Errors in
Flash-Memory-Based Solid-State Drives: Analysis, Mitigation, and Recovery.
Inside Solid State Drives. 2018.

[20] Yu Cai, Erich F Haratsch, Onur Mutlu, and Ken Mai. Error Patterns in MLC
NAND Flash Memory: Measurement, Characterization, and Analysis. In DATE.
2012.

[21] Sanguhn Cha, O Seongil, Hyunsung Shin, Sangjoon Hwang, Kwangil Park,
Seong Jin Jang, et al. Defect Analysis and Cost-Effective Resilience Architecture
for Future DRAM Devices. In HPCA. 2017.

[22] Karthik Chandrasekar, Sven Goossens, Christian Weis, Martijn Koedam, Benny
Akesson, Norbert Wehn, et al. Exploiting Expendable Process-Margins in
DRAMs for Run-Time Performance Optimization. In DATE. 2014.

[23] Kevin K Chang, Abhijith Kashyap, Hasan Hassan, Saugata Ghose, Kevin Hsieh,
Donghyuk Lee, et al. Understanding Latency Variation in Modern DRAM Chips:
Experimental Characterization, Analysis, and Optimization. In SIGMETRICS.
2016.

[24] Kevin K Chang, A Giray Yaălikçi, Saugata Ghose, Aditya Agrawal, Niladrish
Chatterjee, Abhijith Kashyap, et al. Understanding Reduced-Voltage Opera-
tion in Modern DRAM Devices: Experimental Characterization, Analysis, and
Mechanisms. In SIGMETRICS. 2017.

[25] E Chen, D Apalkov, Z Diao, A Driskill-Smith, D Druist, D Lottis, et al. Advances
and Future Prospects of Spin-Transfer Torque Random Access Memory. TOM.
2010.

[26] Kuo-Liang Cheng, Ming-Fu Tsai, and Cheng-Wen Wu. Neighborhood Pattern-
Sensitive Fault Testing and Diagnostics for Random-Access Memories. TCADICS.
2002.

[27] Haerang Choi, Dosun Hong, Jaesung Lee, and Sungjoo Yoo. Reducing DRAM
Refresh Power Consumption by Runtime Profiling of Retention Time and Dual-
Row Activation. Microprocessors and Microsystems. 2020.

[28] Ki Chul Chun, Hui Zhao, Jonathan D Harms, Tae-Hyoung Kim, Jian-Ping Wang,
and Chris H Kim. A Scaling Roadmap and Performance Evaluation of In-Plane
and Perpendicular MTJ Based STT-MRAMs for High-Density Cache Memory.
JSSC. 2012.

[29] Lucian Cojocar, Jeremie Kim, Minesh Patel, Lillian Tsai, Stefan Saroiu, Alec Wol-
man, et al. Are We Susceptible to RowHammer? An End-to-End Methodology
for Cloud Providers. In S&P. 2020.

[30] Lucian Cojocar, Kaveh Razavi, Cristiano Giuffrida, and Herbert Bos. Exploiting
Correcting Codes: On the Effectiveness of ECC Memory Against RowHammer
Attacks. In S&P. 2019.

[31] Daniel J Costello and Shu Lin. Error Control Coding: Fundamentals and Applica-
tions. Prentice Hall. 1982.

[32] Kjersten Criss, Kuljit Bains, Rajat Agarwal, Tanj Bennett, Terry Grunzke, Jan-
gryul Keith Kim, et al. Improving Memory Reliability by Bounding DRAM
Faults: DDR5 Improved Reliability Features. In MEMSYS. 2020.

[33] Xiaole Cui, Zuolin Cheng, Chunglen Lee, Xinnan Lin, Yiqun Wei, Xiaogang
Chen, et al. A Snake Addressing Scheme for Phase Change Memory Testing.
SCIS. 2016.

[34] Howard David, Chris Fallin, Eugene Gorbatov, Ulf R Hanebutte, and Onur Mutlu.
Memory Power Management via Dynamic Voltage/Frequency Scaling. In ICAC.
2011.

[35] Leonardo De Moura and Nikolaj Bjørner. Z3: An Efficient SMT Solver. In TACAS.
2008.

[36] Rob Dekker, Frans Beenker, and Loek Thijssen. A Realistic Fault Model and
Test Algorithms for Static Random Access Memories. TCAD. 1990.

[37] Timothy J Dell. A White Paper on the Benefits of Chipkill-Correct ECC for PC
Server Main Memory. IBM Microelectronics Division. 1997.

[38] Robert H Dennard. Field-Effect Transistor Memory. US Patent 3,387,286. 1968.
[39] Everspin Technologies. 16Mb MRAM MR4A16B. https://www.everspin.com/

16mb-mram-parallel-interface. 2021.
[40] Pietro Frigo, Emanuele Vannacci, Hasan Hassan, Victor van der Veen, Onur

Mutlu, Cristiano Giuffrida, et al. TRRespass: Exploiting the Many Sides of Target
Row Refresh. In IEEE S&P. 2020.

[41] Spencer M Gold and Arun B Hegde. Providing Test Coverage of Integrated ECC
Logic en Embedded Memory. US Patent 8,914,687. 2014.

[42] Seong-Lyong Gong, Jungrae Kim, and Mattan Erez. DRAM Scaling Error Evalu-
ation Model Using Various Retention Time. In DSN-W. 2017.

[43] Seong-Lyong Gong, Jungrae Kim, Sangkug Lym, Michael Sullivan, Howard
David, and Mattan Erez. DUO: Exposing On-Chip Redundancy to Rank-Level
ECC for High Reliability. In HPCA. 2018.

[44] Kevin W Gorman, Michael R Ouellette, and Patrick E Perry. Memory Test With
In-Line Error Correction Code Logic. US Patent 9,224,503. 2015.

[45] Xiaochen Guo, Mahdi Nazm Bojnordi, Qing Guo, and Engin Ipek. Sanitizer:
Mitigating the Impact of Expensive ECC Checks on STT-MRAM Based Main
Memories. TOC. 2017.

[46] T Hamamoto, S Sugiura, and S Sawada. Well Concentration: A Novel Scaling
Limitation Factor Derived From DRAM Retention Time and Its Modeling. In
IEDM. 1995.

[47] Takeshi Hamamoto, Soichi Sugiura, and Shizuo Sawada. On the Retention Time
Distribution of Dynamic Random Access Memory (DRAM). In TED. 1998.

[48] Said Hamdioui, Peyman Pouyan, Huawei Li, Ying Wang, Arijit Raychowdhur,
and Insik Yoon. Test and Reliability of Emerging Non-Volatile Memories. In
ATS. 2017.

[49] Richard W Hamming. Error Detecting and Error Correcting Codes. In Bell Labs
Technical Journal. 1950.

[50] Yinhe Han, Ying Wang, Huawei Li, and Xiaowei Li. Data-Aware DRAM Refresh
to Squeeze the Margin of Retention Time in Hybrid Memory Cube. In ICCAD.
2014.

[51] Charles R. Harris, K. Jarrod Millman, Stéfan J. van der Walt, Ralf Gommers,
Pauli Virtanen, David Cournapeau, et al. Array Programming with NumPy.
Nature. 2020.

[52] Hasan Hassan, Yahya C. Tugrul, Jeremie S. Kim, Victor Van der Veen, Kaveh
Razavi, and Onur Mutlu. Uncovering In-DRAM RowHammer Protection Mech-
anisms: A New Methodology, Custom RowHammer Patterns, and Implications.
In MICRO. 2021.

[53] Alexis Hocquenghem. Codes Correcteurs D’erreurs. Chiffres. 1959.
[54] Sungjoo Hong. Memory Technology Trend and Future Challenges. In IEDM.

2010.
[55] Masashi Horiguchi and Kiyoo Itoh. Nanoscale Memory Repair. Springer SBM.

2011.
[56] Yiming Huai et al. Spin-Transfer Torque MRAM (STT-MRAM): Challenges and

Prospects. AAPPS Bulletin. 2008.
[57] J. D. Hunter. Matplotlib: A 2D Graphics Environment. Computing in Science &

Engineering. 2007.
[58] Andy A Hwang, Ioan A Stefanovici, and Bianca Schroeder. Cosmic Rays Don’t

Strike Twice: Understanding the Nature of DRAM Errors and the Implications
for System Design. In ASPLOS. 2012.

[59] Intelligent Memory. I’M ECC DRAM with Integrated Error Correcting Code.
Product Brief. 2016.

[60] Intelligent Memory. I’M ECC DRAM with Integrated Error Correcting Code.
Product Brief. 2020.

[61] Engin Ipek, Jeremy Condit, Edmund B Nightingale, Doug Burger, and Thomas
Moscibroda. Dynamically Replicated Memory: Building Reliable Systems from
Nanoscale Resistive Memories. In ASPLOS. 2010.

[62] ITRS. More Moore. 2015. www.itrs2.net.

14

https://github.com/CMU-SAFARI/BEER
https://github.com/CMU-SAFARI/EINSim
https://github.com/CMU-SAFARI/HARP
http://developer.amd.com/wordpress/media/2012/10/325591.pdf
http://developer.amd.com/wordpress/media/2012/10/325591.pdf
https://www.everspin.com/16mb-mram-parallel-interface
https://www.everspin.com/16mb-mram-parallel-interface
www.itrs2.net

[63] Bruce Jacob, DavidWang, and Spencer Ng. Memory Systems: Cache, DRAM, Disk.
Morgan Kaufmann. 2010. Chapter 30.3: “Memory Errors and Error Correction”.

[64] JEDEC. DDR4 SDRAM Specification. 2012.
[65] JEDEC. Low Power Double Data Rate 4 (LPDDR4) SDRAM Specification. JEDEC

Standard JESD209–4B. 2014.
[66] JEDEC. JEP122H: Failure Mechanisms and Models for Semiconductor Devices.

2016.
[67] JEDEC. DDR5 SDRAM Specification. 2020.
[68] JEDEC. Main Memory: DDR4 & DDR5 SDRAM. https://www.jedec.org/

category/technology-focus-area/main-memory-ddr3-ddr4-sdram. 2021.
[69] Sangmok Jeong, SeungYup Kang, and Joon-Sung Yang. PAIR: Pin-Aligned In-

DRAM ECC Architecture Using Expandability of Reed-Solomon Code. In DAC.
2020.

[70] Seonghoon Jin, Jeong-Hyong Yi, Jae Hoon Choi, Dae Gwan Kang, Young June
Park, and Hong Shick Min. Prediction of Data Retention Time Distribution of
DRAM by Physics-Based Statistical Simulation. TED. 2005.

[71] Matthias Jung, Deepak M Mathew, Carl C Rheinländer, Christian Weis, and
Norbert Wehn. A Platform to Analyze DDR3 DRAM’s Power and Retention
Time. IEEE Design & Test. 2017.

[72] Matthias Jung, Deepak M Mathew, Christian Weis, and Norbert Wehn. Approx-
imate Computing With Partially Unreliable Dynamic Random Access Memory-
Approximate DRAM. In DAC. 2016.

[73] Sangbeom Kang, Woo Yeong Cho, Beak-Hyung Cho, Kwang-Jin Lee, Chang-Soo
Lee, Hyung-Rok Oh, et al. A 0.1-um 1.8-V 256-Mb Phase-Change RandomAccess
Memory (PRAM)With 66-MHz Synchronous Burst-Read Operation. JSSC. 2006.

[74] Uksong Kang, Hak-soo Yu, Churoo Park, Hongzhong Zheng, John Halbert,
Kuljit Bains, et al. Co-Architecting Controllers and DRAM to Enhance DRAM
Process Scaling. In The Memory Forum. 2014.

[75] Mohammad Nasim Imtiaz Khan and Swaroop Ghosh. Test Challenges and
Solutions for Emerging Non-Volatile Memories. In VTS. 2018.

[76] Samira Khan, Donghyuk Lee, Yoongu Kim, Alaa R Alameldeen, Chris Wilkerson,
and Onur Mutlu. The Efficacy of Error Mitigation Techniques for DRAM
Retention Failures: A Comparative Experimental Study. In SIGMETRICS. 2014.

[77] Samira Khan, Donghyuk Lee, and Onur Mutlu. PARBOR: An Efficient System-
Level Technique to Detect Data-Dependent Failures in DRAM. In DSN. 2016.

[78] Samira Khan, Chris Wilkerson, Donghyuk Lee, Alaa R Alameldeen, and Onur
Mutlu. A Case for Memory Content-Based Detection and Mitigation of Data-
Dependent Failures in DRAM. In CAL. 2016.

[79] Samira Khan, Chris Wilkerson, Zhe Wang, Alaa R Alameldeen, Donghyuk Lee,
and Onur Mutlu. Detecting and Mitigating Data-Dependent DRAM Failures by
Exploiting Current Memory Content. In MICRO. 2017.

[80] Dong Wan Kim and Mattan Erez. Balancing Reliability, Cost, and Performance
Tradeoffs With FreeFault. In HPCA. 2015.

[81] Dong Wan Kim and Mattan Erez. RelaxFault Memory Repair. In ISCA. 2016.
[82] Joohee Kim and Marios C Papaefthymiou. Block-Based Multiperiod Dynamic

Memory Design for Low Data-Retention Power. In TVLSI. 2003.
[83] Jungrae Kim, Michael Sullivan, and Mattan Erez. Bamboo ECC: Strong, Safe,

and Flexible Codes For Reliable Computer Memory. In HPCA. 2015.
[84] Jeremie S Kim, Minesh Patel, Hasan Hassan, and Onur Mutlu. Solar-DRAM:

Reducing DRAM Access Latency by Exploiting the Variation in Local Bitlines.
In ICCD. 2018.

[85] Jeremie S. Kim, Minesh Patel, Hasan Hassan, and Onur Mutlu. The DRAM
Latency PUF: Quickly Evaluating Physical Unclonable Functions by Exploiting
the Latency-Reliability Tradeoff in Modern Commodity DRAM Devices. In
HPCA. 2018.

[86] Jeremie S Kim, Minesh Patel, Hasan Hassan, Lois Orosa, and Onur Mutlu. D-
RaNGe: Using Commodity DRAM Devices to Generate True Random Numbers
With Low Latency And High Throughput. In HPCA. 2019.

[87] Jeremie S. Kim, Minesh Patel, Abdullah Giray Yaglikci, Hasan Hassan, Roknod-
din Azizi, Lois Orosa, et al. Revisiting RowHammer: An Experimental Analysis
of Modern Devices and Mitigation Techniques. In ISCA. 2020.

[88] Kinarn Kim and Su Jin Ahn. Reliability Investigations for Manufacturable High
Density PRAM. In IRPS. 2005.

[89] Kinam Kim, Chang-Gyu Hwang, and Jong Gil Lee. DRAM Technology Perspec-
tive for Gigabit Era. TED. 1998.

[90] Kinam Kim and Jooyoung Lee. A New Investigation of Data Retention Time in
Truly Nanoscaled DRAMs. In EDL. 2009.

[91] Yoongu Kim, Ross Daly, Jeremie Kim, Chris Fallin, Ji Hye Lee, Donghyuk Lee,
et al. Flipping Bits in Memory Without Accessing Them: An Experimental
Study of DRAM Disturbance Errors. In ISCA. 2014.

[92] Donald Kline, Rami Melhem, and Alex K Jones. Sustainable Fault Management
and Error Correction for Next-Generation Main Memories. In IGSC. 2017.

[93] Donald Kline, Jiangwei Zhang, Rami Melhem, and Alex K Jones. Flower and
Fame: A Low Overhead Bit-Level Fault-Map and Fault-Tolerance Approach for
Deeply Scaled Memories. In HPCA. 2020.

[94] Wei Kong, Paul C Parries, G Wang, and Subramanian S Iyer. Analysis of Re-
tention Time Distribution of Embedded DRAM-A New Method to Characterize
Across-Chip Threshold Voltage Variation. In ITC. 2008.

[95] Skanda Koppula, Lois Orosa, A Giray Yağlıkçı, Roknoddin Azizi, Taha Shahroodi,
Konstantinos Kanellopoulos, et al. EDEN: Enabling Energy-Efficient, High-
Performance Deep Neural Network Inference Using Approximate DRAM. In
MICRO. 2019.

[96] Kira Kraft, Chirag Sudarshan, DeepakMMathew, ChristianWeis, NorbertWehn,
and Matthias Jung. Improving the Error Behavior of DRAM by Exploiting its
Z-Channel Property. In DATE. 2018.

[97] Emre Kültürsay, Mahmut Kandemir, Anand Sivasubramaniam, and Onur Mutlu.
Evaluating STT-RAM as an Energy-Efficient Main Memory Alternative. In
ISPASS. 2013.

[98] Nohhyup Kwak, Saeng-Hwan Kim, Kyong Ha Lee, Chang-Ki Baek, Mun Seon
Jang, Yongsuk Joo, et al. A 4.8 Gb/s/pin 2Gb LPDDR4 SDRAM with Sub-100µA
Self-Refresh Current for IoT Applications. In ISSCC. 2017.

[99] Hye-Jung Kwon, Eunsung Seo, Chan-Yong Lee, Young-Hun Seo, Gong-Heum
Han, Hye-Ran Kim, et al. An Extremely Low-Standby-Power 3.733 Gb/s/pin
2Gb LPDDR4 SDRAM for Wearable Devices. In ISSCC. 2017.

[100] Sanghyuk Kwon, Young Hoon Son, and Jung Ho Ahn. Understanding DDR4 in
Pursuit of In-DRAM ECC. In ISOCC. 2014.

[101] Benjamin C Lee, Engin Ipek, Onur Mutlu, and Doug Burger. Architecting Phase
Change Memory as a Scalable DRAM Alternative. In ISCA. 2009.

[102] Benjamin C Lee, Ping Zhou, Jun Yang, Youtao Zhang, Bo Zhao, Engin Ipek, et al.
Phase-Change Technology and the Future of Main Memory. IEEE Micro. 2010.

[103] Donghyuk Lee, Samira Khan, Lavanya Subramanian, Saugata Ghose, Rachata
Ausavarungnirun, Gennady Pekhimenko, et al. Design-Induced Latency Varia-
tion inModern DRAMChips: Characterization, Analysis, and Latency Reduction
Mechanisms. In SIGMETRICS. 2017.

[104] D. Lee, Y. Kim, G. Pekhimenko, S. Khan, V. Seshadri, K. Chang, et al. Adaptive-
Latency DRAM: Optimizing DRAM Timing for the Common-Case. In HPCA.
2015.

[105] Suyoun Lee, Jeung-hyun Jeong, Taek Sung Lee, Won Mok Kim, and Byung-ki
Cheong. A Study on the Failure Mechanism of a Phase-Change Memory in
Write/Erase Cycling. EDL. 2009.

[106] Seunghak Lee, Nam Sung Kim, and Daehoon Kim. Exploiting OS-Level Memory
Offlining for DRAM Power Management. CAL. 2019.

[107] Seok-Hee Lee. Technology Scaling Challenges and Opportunities of Memory
Devices. In IEDM. 2016.

[108] Udo Lieneweg, D Nguyen, and B Blaes. Assesment of DRAM Reliability from
Retention Time Measurements. Flight Readiness Technol. Assessment NASA EEE
Parts Prog. 1998.

[109] Chung Hsiang Lin, De-Yu Shen, Yi-Jung Chen, Chia-Lin Yang, and Michael
Wang. SECRET: Selective Error Correction for Refresh Energy Reduction in
DRAMs. In ICCD. 2012.

[110] Jamie Liu, Ben Jaiyen, Yoongu Kim, Chris Wilkerson, and Onur Mutlu. An
Experimental Study of Data Retention Behavior in Modern DRAM Devices:
Implications for Retention Time Profiling Mechanisms. In ISCA. 2013.

[111] Jamie Liu, Ben Jaiyen, Richard Veras, and Onur Mutlu. RAIDR: Retention-Aware
Intelligent DRAM Refresh. In ISCA. 2012.

[112] Stephen Longofono, Donald Kline Jr, Rami Melhem, and Alex K Jones. Predicting
and Mitigating Single-Event Upsets in DRAM Using HOTH. Microelectronics
Reliability. 2021.

[113] Yixin Luo, Saugata Ghose, Yu Cai, Erich F Haratsch, and Onur Mutlu. Heat-
Watch: Improving 3D NAND Flash Memory Device Reliability by Exploiting
Self-Recovery and Temperature Awareness. In HPCA. 2018.

[114] Yixin Luo, Saugata Ghose, Yu Cai, Erich F Haratsch, and Onur Mutlu. Improving
3D NAND Flash Memory Lifetime by Tolerating Early Retention Loss and
Process Variation. In SIGMETRICS. 2018.

[115] Yixin Luo, Sriram Govindan, Bikash Sharma, Mark Santaniello, Justin Meza,
Aman Kansal, et al. Characterizing Application Memory Error Vulnerability
to Optimize Datacenter Cost via Heterogeneous-Reliability Memory. In DSN.
2014.

[116] Jack A Mandelman, Robert H Dennard, Gary B Bronner, John K DeBrosse, Rama
Divakaruni, Yujun Li, et al. Challenges and Future Directions for the Scaling of
Dynamic Random-Access Memory (DRAM). In IBM JRD. 2002.

[117] Timothy C May and Murray H Woods. Alpha-Particle-Induced Soft Errors in
Dynamic Memories. TED. 1979.

[118] mcelog. Bad Page Offlining. mcelog. 2021. https://mcelog.org/badpageofflining.
html.

[119] J Meza et al. A Large-Scale Study of Flash Memory Errors in the Field. In
SIGMETRICS. 2015.

[120] Justin Meza, Qiang Wu, Sanjeev Kumar, and Onur Mutlu. Revisiting Memory
Errors in Large-Scale Production Data Centers: Analysis and Modeling of New
Trends from the Field. In DSN. 2015.

[121] Micron Technology Inc. 2017. ECC Brings Reliability and Power Efficiency to
Mobile Devices. Technical Report. Micron Technology Inc.

[122] Micron Technology Inc. 2020. TN-40-40: DDR4 Point-to-Point Design Guide.
Technical Report. Micron Technology Inc.

[123] Todd K Moon. Error Correction Coding: Mathematical Methods and Algorithms.
John Wiley & Sons. 2005.

15

https://www.jedec.org/category/technology-focus-area/main-memory-ddr3-ddr4-sdram
https://www.jedec.org/category/technology-focus-area/main-memory-ddr3-ddr4-sdram
https://mcelog.org/badpageofflining.html
https://mcelog.org/badpageofflining.html

[124] Y. Mori, K. Ohyu, K. Okonogi, and R. i. Yamada. The Origin of Variable Retention
Time in DRAM. In IEDM. 2005.

[125] Ireneusz Mrozek. Analysis of Multibackground Memory Testing Techniques.
2010.

[126] Ireneusz Mrozek. Multi-Run Memory Tests for Pattern Sensitive Faults. Springer.
2019.

[127] LevMukhanov, Dimitrios S Nikolopoulos, and Georgios Karakonstantis. DStress:
Automatic Synthesis of DRAM Reliability Stress Viruses Using Genetic Algo-
rithms. In MICRO. 2020.

[128] Shubhendu S Mukherjee, Joel Emer, Tryggve Fossum, and Steven K Reinhardt.
Cache Scrubbing in Microprocessors: Myth or Necessity?. In SDC. 2004.

[129] Onur Mutlu. Memory Scaling: A Systems Architecture Perspective. In IMW.
2013.

[130] Onur Mutlu. Main Memory Scaling: Challenges and Solution Directions. In
More than Moore Technologies for Next Generation Computer Design. Springer,
127–153. 2015.

[131] Onur Mutlu. The RowHammer Problem and Other Issues We May Face as
Memory Becomes Denser. In DATE. 2017.

[132] Onur Mutlu and Jeremie Kim. RowHammer: A Retrospective. In TCAD. 2019.
[133] Onur Mutlu and Lavanya Subramanian. Research Problems and Opportunities

in Memory Systems. In SUPERFRI. 2014.
[134] Helia Naeimi, Charles Augustine, Arijit Raychowdhury, Shih-Lien Lu, and James

Tschanz. STTRAM Scaling and Retention Failure. Intel Technology Journal. 2013.
[135] Prashant J Nair, Bahar Asgari, and Moinuddin K Qureshi. SuDoku: Tolerating

High-Rate of Transient Failures for Enabling Scalable STTRAM. In DSN. 2019.
[136] Prashant J Nair, Dae-Hyun Kim, and Moinuddin K Qureshi. ArchShield: Ar-

chitectural Framework for Assisting DRAM Scaling by Tolerating High Error
Rates. In ISCA. 2013.

[137] Prashant J Nair, Vilas Sridharan, and Moinuddin K Qureshi. XED: Exposing
On-Die Error Detection Information for Strong Memory Reliability. In ISCA.
2016.

[138] Omar Naji, Christian Weis, Matthias Jung, Norbert Wehn, and Andreas Hansson.
A High-Level DRAM Timing, Power And Area Exploration Tool. In SAMOS.
2015.

[139] NVIDIA. Dynamic Page Retirement. NVIDIA. 2020. https://docs.nvidia.com/
deploy/dynamic-page-retirement/index.html.

[140] Tae-Young Oh, Hoeju Chung, Jun-Young Park, Ki-Won Lee, Seunghoon Oh, Su-
Yeon Doo, et al. A 3.2 Gbps/pin 8 Gbit 1.0 V LPDDR4 SDRAM with Integrated
ECC Engine for Sub-1 V DRAM Core Operation. JSSC. 2014.

[141] Lois Orosa, Abdullah Giray Yağlıkçı, Haocong Luo, Ataberk Olgun, Jisung
Park, Hasan Hassan, et al. A Deeper Look into RowHammer’s Sensitivities:
Experiemental Analysis of Real DRAMChips and Implications on Future Attacks
and Defenses. In MICRO. 2021.

[142] Sung-Il Pae, Vivek Kozhikkottu, Dinesh Somasekar,WeiWu, Shankar Ganesh Ra-
masubramanian, Melin Dadual, et al. Minimal Aliasing Single-Error-Correction
Codes for DRAM Reliability Improvement. IEEE Access. 2021.

[143] Kyungbae Park, Donghyuk Yun, and Sanghyeon Baeg. Statistical Distributions
of Row-Hammering Induced Failures in DDR3 Components. Microelectronics
Reliability. 2016.

[144] Sung-Kye Park. Technology Scaling Challenge and Future Prospects of DRAM
and NAND Flash Memory. In IMW. 2015.

[145] Minesh Patel, Jeremie Kim, Taha Shahroodi, Hasan Hassan, and Onur Mutlu.
Bit-Exact ECC Recovery (BEER): Determining DRAM On-Die ECC Functions
by Exploiting DRAM Data Retention Characteristics. In MICRO. 2020.

[146] Minesh Patel, Jeremie S Kim, Hasan Hassan, and Onur Mutlu. Understanding
and Modeling On-Die Error Correction in Modern DRAM: An Experimental
Study Using Real Devices. In DSN. 2019.

[147] Minesh Patel, Jeremie S Kim, and Onur Mutlu. The Reach Profiler (REAPER):
Enabling the Mitigation of DRAM Retention Failures via Profiling at Aggressive
Conditions. In ISCA. 2017.

[148] Minesh Patel, Geraldo F. Oliveira, and Onur Mutlu. HARP Artifacts. ZENODO.
2021. doi:10.5281/zenodo.5148592.

[149] Moinuddin K Qureshi. Pay-As-You-Go: Low-Overhead Hard-Error Correction
for Phase Change Memories. In MICRO. 2011.

[150] Moinuddin K Qureshi, Dae-Hyun Kim, Samira Khan, Prashant J Nair, and Onur
Mutlu. AVATAR: A Variable-Retention-Time (VRT) Aware Refresh for DRAM
Systems. In DSN. 2015.

[151] Moinuddin K Qureshi, Vijayalakshmi Srinivasan, and Jude A Rivers. Scalable
High Performance Main Memory System Using Phase-Change Memory Tech-
nology. In ISCA. 2009.

[152] Arijit Raychowdhury, Dinesh Somasekhar, Tanay Karnik, and Vivek De. De-
sign Space and Scalability Exploration of 1T-1STT MTJ Memory Arrays in the
Presence of Variability and Disturbances. In IEDM. 2009.

[153] Phillip J Restle, JW Park, and Brian F Lloyd. DRAM Variable Retention Time. In
IEDM. 1992.

[154] Tom Richardson and Ruediger Urbanke. Modern Coding Theory. Cambridge
University Press. 2008.

[155] Ron M Roth. Introduction to Coding Theory. Cambridge University Press. 2006.
[156] Abdallah M Saleh, Juan J Serrano, and Janak H Patel. Reliability of Scrubbing

Recovery-Techniques for Memory Systems. TR. 1990.
[157] Stuart Schechter, Gabriel H Loh, Karin Strauss, and Doug Burger. Use ECP, Not

ECC, for Hard Failures in Resistive Memories. ISCA. 2010.
[158] Nak Hee Seong, Dong Hyuk Woo, Vijayalakshmi Srinivasan, Jude A Rivers,

and Hsien-Hsin S Lee. SAFER: Stuck-at-Fault Error Recovery for Memories. In
MICRO. 2010.

[159] Rasool Sharifi and Zainalabedin Navabi. Online Profiling for Cluster-Specific
Variable Rate Refreshing in High-Density DRAM Systems. In ETS. 2017.

[160] Wongyu Shin, Jungwhan Choi, Jaemin Jang, Jinwoong Suh, Youngsuk Moon,
Yongkee Kwon, et al. DRAM-Latency Optimization Inspired by Relationship
Between Row-Access Time and Refresh Timing. TOC. 2015.

[161] C Glenn Shirley and W Robert Daasch. Copula Models of Correlation: A DRAM
Case Study. In TC. 2014.

[162] Young Hoon Son, Sukhan Lee, O Seongil, Sanghyuk Kwon, Nam Sung Kim, and
Jung Ho Ahn. CiDRA: A Cache-Inspired DRAM Resilience Architecture. In
HPCA. 2015.

[163] Vilas Sridharan, Nathan DeBardeleben, Sean Blanchard, Kurt B Ferreira, Jon
Stearley, John Shalf, et al. Memory Errors in Modern Systems: The Good, the
Bad, and the Ugly. In ASPLOS. 2015.

[164] Vilas Sridharan and Dean Liberty. A Study of DRAM Failures in the Field. In
SC. 2012.

[165] Vilas Sridharan, Jon Stearley, Nathan DeBardeleben, Sean Blanchard, and Sud-
hanva Gurumurthi. Feng Shui of Supercomputer Memory: Positional Effects in
DRAM and SRAM Faults. In SC. 2013.

[166] Soubhagya Sutar, Arnab Raha, and Vijay Raghunathan. D-PUF: An Intrinsically
Reconfigurable DRAM PUF for Device Authentication in Embedded Systems.
In CASES. 2016.

[167] Synopsys. 2015. Reliability, Availability and Serviceability (RAS) for Memory
Interfaces. Technical Report. Synopsys.

[168] Mohammad Khavari Tavana, Amir Kavyan Ziabari, Mohammad Arjomand, Mah-
mut Kandemir, Chita Das, and David Kaeli. REMAP: A Reliability/Endurance
Mechanism for Advancing PCM. In MEMSYS. 2017.

[169] Guido Van Rossum and Fred L. Drake. Python 3 Reference Manual. CreateSpace.
2009.

[170] Elena Ioana Vatajelu, Peyman Pouyan, and Said Hamdioui. State of the Art and
Challenges for Test and Reliability of Emerging Nonvolatile Resistive Memories.
JCTA. 2018.

[171] Ravi K Venkatesan, Stephen Herr, and Eric Rotenberg. Retention-Aware Place-
ment in DRAM (RAPID): Software Methods for Quasi-Non-Volatile DRAM. In
HPCA. 2006.

[172] Pauli Virtanen, Ralf Gommers, Travis E Oliphant, Matt Haberland, Tyler Reddy,
David Cournapeau, et al. SciPy 1.0: Fundamental Algorithms For Scientific
Computing In Python. Nature Methods. 2020.

[173] Matt Von Thun. Qualification and Reliability of MRAM Toggle Memory De-
signed for Space Applications. https://www.everspin.com/file/157395/download.
2020.

[174] HaoWang. ArchitectingMemory Systems UponHighly Scaled Error-ProneMemory
Technologies. Ph.D. Dissertation. Rensselaer Polytechnic Institute. 2017.

[175] Christian Weis, Matthias Jung, Peter Ehses, Cristiano Santos, Pascal Vivet, Sven
Goossens, et al. Retention Time Measurements and Modelling of Bit Error Rates
of Wide I/O DRAM in MPSoCs. In DATE. 2015.

[176] Chris Wilkerson, Hongliang Gao, Alaa R Alameldeen, Zeshan Chishti, Muham-
mad Khellah, and Shih-Lien Lu. Trading Off Cache Capacity for Reliability to
Enable Low Voltage Operation. ISCA. 2008.

[177] H-S Philip Wong, Simone Raoux, SangBum Kim, Jiale Liang, John P Reifenberg,
Bipin Rajendran, et al. Phase Change Memory. Proc. IEEE. 2010.

[178] David S Yaney, Chih-Yuan Lu, Ross A Kohler, Michael J Kelly, and James TNelson.
A Meta-Stable Leakage Phenomenon in DRAM Charge Storage-Variable Hold
Time. In IEDM. 1987.

[179] Doe Hyun Yoon, Naveen Muralimanohar, Jichuan Chang, Parthasarathy Ran-
ganathan, Norman P Jouppi, and Mattan Erez. FREE-p: Protecting Non-Volatile
Memory Against Both Hard and Soft Errors. In HPCA. 2011.

[180] Jiangwei Zhang, Donald Kline, Liang Fang, Rami Melhem, and Alex K Jones.
Dynamic Partitioning To Mitigate Stuck-At Faults in Emerging Memories. In
ICCAD. 2017.

[181] Xinmiao Zhang. In VLSI Architectures for Modern Error-Correcting Codes. 53.
2015.

[182] Xianwei Zhang, Youtao Zhang, Bruce R Childers, and Jun Yang. Restore Trunca-
tion for Performance Improvement in Future DRAM Systems. In HPCA. 2016.

[183] Zhe Zhang, Weijun Xiao, Nohhyun Park, and David J Lilja. Memory Module-
Level Testing and Error Behaviors for Phase Change Memory. In ICCD. 2012.

[184] Bo Zhao. Improving Phase Change Memory (PCM) and Spin-Torque-Transfer
Magnetic-RAM (STT-MRAM) as Next-Generation Memories: A Circuit Perspective.
Ph.D. Dissertation. University of Pittsburgh. 2014.

16

https://docs.nvidia.com/deploy/dynamic-page-retirement/index.html
https://docs.nvidia.com/deploy/dynamic-page-retirement/index.html
https://www.everspin.com/file/157395/download

A ARTIFACT DESCRIPTION APPENDIX
A.1 Abstract
Our artifacts provide the source code needed to replicate all exper-
iments in the paper, including all figures. The artifacts comprise
two parts: (1) Monte-Carlo simulations that generate raw data; and
(2) data analysis scripts to parse, aggregate, and plot the data. This
appendix describes both parts and how to run them to replicate our
experiments.

A.2 Artifact Check-list (Meta-information)

Parameter Value
Program C++ program and Python3/shell scripts
Compilation C++11 compiler (tested with GCC 8)
Run-time environment Debian 10 (or similar) Linux
Hardware Standard linux system (>= 40 GB RAM

recommended for the analysis scripts)
Output Plaintext data files and PDF files contain-

ing plots
Experiment workflow Run simulations, aggregate output files,

and run analysis scripts on the outputs
Experiment customization Number of simulation jobs (i.e., Monte-

Carlo samples)
Disk space requirement ≈10-100 GB
Workflow preparation time ≈1 day
Experiment completion time ≈1-2 weeks
Publicly available? Zenodo [148] and GitHub [3]
Code licenses MIT

A.3 Description
A.3.1 How toAccess. The artifacts are available on Zenodowith
DOI 10.5281/zenodo.5148592 [148] and on GitHub [3].

A.3.2 Hardware Dependencies. The artifacts are designed to
run on a typical Linux system. As §A.7 discusses in detail, the
C++ simulations are highly parallelziable with low memory re-
quirements, so a system with more CPUs will reduce the overall
simulation time required. In contrast, the analysis scripts run as
single tasks that consume memory in proportion to the amount
of simulation data (up to 40 GB of memory for the full evaluation
configuration described in §A.7). Therefore a single machine with
a large memory may be necessary.

A.3.3 Software Dependencies.
• GNU Make
• C++11 build toolchain (tested with GCC 8 on Debian 10)
• Python 3 [169] with matplotlib [57], scipy [172], numpy [51]

A.4 Installation
No system installation is required; the C++ code can all be built
and run in place. The C++ application depends on both Z3 [35] and
EINSim [2], and we have: (1) included copies of both source distri-
butions in the Zenodo distribution for sake of convenience; and (2)
integrated them in the GitHub source as submodules. However, the
user may also obtain their source files directly from the projects’
repositories. Both tools can be built using standard C++ toolchains13

13Note that C++17 is required to build the latest version of Z3.

via their respective Makefile projects. For convenience, we provide
scripts lib/build_z3.sh and lib/build_einsim.sh that the user
may refer to for building the dependencies in-place.

The primary C++ application, called harp-artifacts, is built
using the top-level Makefile project. After building Z3 within
the subdirectory lib/z3 (which installs Z3’s C++ headers and
library within that directory), the top-level Makefile will build
harp-artifacts within the top-level directory.

A.5 Experiment Workflow
The artifacts are used to run three different experiments: Fig. 2,
Fig. 4, and Figs. 6-10. We have provided example scripts under
evaluations/ for automatically running the latter two; however,
we recommend the reader to extend these scripts based on their
own compute environment in order to parallelize the simulation
tasks (discussed in §A.7).

A.5.1 Fig. 2: Motivational Data. This is a standalone Python
script that runs in ≈10 seconds with 120 MB of memory using an
Intel i7-7700HQ CPU @ 2.80GHz. The script replicates Fig. 2 in a
PDF output file (or can generate an interactive Matplotlib figure
per command-line arguments).

A.5.2 Fig. 4: Post-correction Probability. This experiment
comprises two steps: (1) data generation from C++ Monte-Carlo
simulations and (2) data analysis using Python scripts.
Step 1: Data generation. harp-artifacts simulates how differ-
ent representative ECC functions (i.e., single-error correcting Ham-
ming codes with randomly-generated parity-check matrices) affect
ECCwords that exhibit uniform-randomly generated pre-correction
error patterns. Each simulated error pattern comprises a single
Monte-Carlo simulation sample. The Python scripts then aggregate
these samples as part of Step 2.

The harp-artifacts binary takes several command-line argu-
ments that are used to configure the experiment:
• Analysis: The experiment to run, either probabilities for the
Fig. 4 experiment or evaluations for the Figs. 6-10 experiment.

• ECC dataword length (k): The length (in bits) of a single-error
correcting Hamming code dataword. This parameter defines the
type of ECC code that will be generated and simulated (i.e., its
generator and parity-checkmatrix dimensions). Our evaluations
are all shown with k = 64, though we verified that all results
and conclusions are consistent with other representative values,
such as k = 128 (§7.1.2).

• Number of ECC codes: The number of Hamming code instances
to generate and simulate. Each code’s generator and parity-
check matrices are created uniform-randomly according to the
random seed command-line parameter.

• Number of ECC words: The number of ECC words to simulate
for each randomly-generated ECC code.

• Random seed: The random seed to use for the first ECC code gen-
erated. The random seed is then incremented when generating
each subsequent ECC code.

To run the simulations for this experiment, the analysis parameter
should be provided as probabilities. §A.7 summarizes different
configurations for the remaining parameters and their expected
runtime and memory usage impact. All simulation output will be

17

given on stdout, which must be redirected to a text file to pass the
data to the Python analysis scripts in the next step.
Step 2: Data analysis. The Python script script/figure_
4-parse_postcorrection_probabilities_data.py accepts an
input file containing the raw output from the previous step. The
script will then parse, aggregate, analyze, and plot the data using
matplotlib (either interactively or saved to a PDF file, based on a
command-line switch).

A.5.3 Figs. 6-10: Profiler Evaluation. This experiment runs in
two parts: (1) data generation from C++ Monte-Carlo simulations
and (2) data analysis using Python scripts. The experimentworkflow
is nearly identical to that of §A.5.2.
Step 1: Data generation. All harp-artifacts command-line pa-
rameters operate the same way as in §A.5.2, except the analysis
parameter must be given as evaluations for this experiment.

In evaluationsmode, harp-artifacts simulates the coverage
achieved by the different profiling mechanisms that we evaluate
in §7. These simulations are extremely time consuming due to the
complexity of calculating error coverage, which requires a large
number of computations, including repeated SAT solver invocations.
§A.7 provides the expected runtimes for different configurations
that the reader may use to estimate a viable configuration based on
their available compute resources.
Step 2: Data analysis. The Python script script/figures_
6to10-parse_evaluation_data.py accepts an input file contain-
ing the raw output from the previous step and is run the same way
as the script in §A.5.2. Each figure is output either interactively or
in individual PDF files based on a command line switch.

A.6 Evaluation and Expected Results
To replicate the results in this paper, it suffices to run each of
the experiments as discussed in §A.5. Note that, as we discuss in
§A.7, our full evaluation configuration is long-running due to the
large number of Monte-Carlo samples that we simulate. It is not
necessary to simulate this many samples to replicate our results;
evenwith relatively few samples, the data yields similar conclusions.
In general, we leave the reader to determine howmany samples they
can realistically simulate based on their available compute resources.
To facilitate this, §A.7 provides runtime estimates measured during
our own evaluations.

A.7 Experiment Customization
As §A.5.2 describes, harp-artifacts has independent command-
line parameters to control the number of ECC codes and ECCwords
simulated. Using the ECC code parameter, it is possible to parallelize
the simulations across different invocations of harp-artifacts
(e.g., as independent jobs on different compute nodes). For example,
simulating 100 ECC words for each of 1000 ECC codes can be done
by simulating 10 ECC codes per job across 100 independent jobs
(and incrementing the random seed by 10 for each subsequent job
to avoid repeating the same experiment). The Python data analysis
scripts will aggregate the raw data, regardless of how the ECC codes
are partitioned.

A.8 Estimating Runtime and Memory Usage
Running the experiments for Fig. 4, and Figs. 6-10 requires account-
ing for available compute and memory resources. In this section, we

discuss different configurations of harp-artifacts and how they
impact runtime and memory usage when running on a compute
cluster comprising Intel Xeon Gold 5118 systems.

A.8.1 Fig. 4 Estimation. Table 3 summarizes the expected run-
time and disk usage of a single task for different harp-artifacts
configurations when running the Fig. 4 experiment. In the eval-
uations we present in §7, we run 16 instances of the “Evaluated”
configuration shown in Table 3, amounting to a total of 74 GB of
disk usage and approximately 1 CPU-day of total execution time.
In general, the Fig. 4 simulations dump a large amount of raw data.
However, the runtime and memory usage are relatively low, so the
reader may feasibly replicate our full evaluation configuration.

Configuration K ECC codes ECC words Runtime Disk Usage
Reduced 64 10 100 ≈30 sec. 4.8 MB
Evaluated 64 100 10000 ≈90 min. 4.6 GB
Table 3: Estimated runtime and disk usage for one instance of
harp-artifacts when running the Fig. 4 experiment.

A.8.2 Figs. 6-10 Estimation. Table 4 summarizes the ex-
pected runtime and disk usage of a single task for different
harp-artifacts configurations when running the Figs. 6-10 ex-
periments. In the evaluations we present in §7, we run 256 instances
of the “Evaluated” configuration shown in Table 4, amounting to
a total of 3.4 GB of disk usage and approximately 14 CPU-years
of total execution time. In general, the memory and disk usage for
harp-artifacts is negligible in this experiment, but the runtime
can be a considerable limitation.

Configuration K ECC codes ECC words Runtime Disk Usage
Reduced 8 1 1 ≈10 sec. -
Reduced 16 1 1 ≈30 sec. -
Reduced 32 1 1 ≈5 min. -
Reduced 64 1 1 ≈30 min. -
Evaluated 64 10 100 ≈20 days 13 MB
Table 4: Estimated runtime and disk usage for one instance of
harp-artifacts when running the Figs. 6-10 experiment.

As we mention in §A.6, it is not necessary to run the full “Evalu-
ated” configuration to replicate our results. By the nature of Monte-
Carlo simulation, simulating more ECC codes and ECC words im-
proves the accuracy of the final estimates. However, the end con-
clusions are already apparent with relatively few samples (albeit
with more noise in the data). Therefore, if running the full “Evalu-
ated” configuration is infeasible, we recommend running a reduced
configuration based on the available compute resources. Note that
the average runtime scales linearly with the number of samples
because the same computation is performed for each sample. For
example, reducing the “Evaluated” configuration to 1 ECC code per
task would reduce the average runtime by a factor of 10, resulting
in jobs that comple in approximately 48 hours.

We find that the Python analysis for the full evaluated configu-
ration (i.e., all 3.4 GB of output) takes approximately 3 hours and
consumes 40 GB of memory. We observe that the memory usage is
roughly linear in the number of evaluated ECC codes and words.

18

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Addressing Scaling-Related Errors
	2.2 Enabling Repair Alongside On-Die ECC
	2.3 Practical and Effective Error Profiling
	2.4 Errors and Error Models
	2.5 Block Codes and Syndrome Decoding

	3 Formalizing Error Profiling
	3.1 Representing the Probability of Error
	3.2 Incorporating On-Die ECC

	4 On-Die ECC's Impact on Profiling
	4.1 Challenge 1: Combinatorial Explosion
	4.2 Challenge 2: Profiling without Feedback
	4.3 Challenge 3: Multi-Bit Data Patterns

	5 Addressing the Three Challenges
	5.1 Necessary Amount of Transparency
	5.2 Exposing Direct Errors to the Profiler
	5.3 Applicability to Other Systems

	6 Hybrid Active-Reactive Profiling
	6.1 HARP Design Overview
	6.2 Active Profiling Implementation
	6.3 Reactive Profiling Implementation
	6.4 Limitations

	7 Evaluations
	7.1 Evaluation Methodology
	7.2 Active Phase Evaluation
	7.3 Reactive Phase Evaluation
	7.4 Case Study: DRAM Data Retention

	8 Related Work
	9 Conclusion
	Acknowledgments
	References
	A Artifact Description Appendix
	A.1 Abstract
	A.2 Artifact Check-list (Meta-information)
	A.3 Description
	A.4 Installation
	A.5 Experiment Workflow
	A.6 Evaluation and Expected Results
	A.7 Experiment Customization
	A.8 Estimating Runtime and Memory Usage

