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Memory Errors
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MRAMPCMDRAM

All suffer worsening error rates with 
continual technology scaling



Memory Repair Mechanisms

•Repair mechanisms combat high memory error rates
• Identify and repair any bits that are at-risk of error
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Profiling a Memory Chip

•Profiler’s goal: identify all bits that are at risk of error
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Q: How does on-die ECC
affect error profiling?

Goal: understand and address the challenges 
that on-die ECC introduces for error profiling



Challenges Introduced by On-Die ECC
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Exponentially increases the at-risk bits
1

Harder to identify each at-risk bit
2

Interferes with data patterns
3

A small set of raw bit errors generates a combinatorially
larger set of at-risk bits

At-risk bits are exposed only when specific raw bit error 
patterns occur

Data patterns must consider combinations of raw bits 
instead of just individual bits alone



Key Observation: Two Sources of Errors
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Key Observation: Two Sources of Errors
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- -E - ECC Decoder - -E E

Upper-bounded by the ECC algorithm

Direct error1 Due to errors 
in the memory chip

Indirect error2
Artifact of the 
on-die ECC algorithm

Key Idea: decouple profiling 
for direct and indirect errors



Hybrid Active-Reactive Profiling (HARP)
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Hybrid Active-Reactive Profiling (HARP)
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Evaluating HARP

•We evaluate HARP using Monte-Carlo simulation
• Enables accurately measuring coverage (using a SAT solver)
• 1,036,980 total ECC words 

• Across 2769 randomly-generated (71, 64) and (136, 128) ECC codes

• ≈14 CPU-years (20 days on 256 cores) of simulation time

•Artifacts are open-sourced

12

https://github.com/CMU-SAFARI/HARP

https://github.com/CMU-SAFARI/HARP


Evaluation Comparison Points
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•We evaluate HARP’s error coverage and speed relative 
to two baseline profiling algorithms:

1. Naive: round-based profiling that ignores on-die ECC
• Each round uses different data patterns (e.g., random data)
• Profiler marks observed errors as at-risk bits

2. BEEP [Patel+,MICRO’20]: knows the exact on-die ECC 
implementation  (i.e., its parity-check matrix)
• Same overall round-based strategy as Naive
• Data patterns designed using the known parity-check matrix



Evaluation Comparison Points
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•We evaluate HARP’s error coverage and speed relative 
to two baseline profiling algorithms:

1. Naive: round-based profiling that ignores on-die ECC
• Each round uses different data patterns (e.g., random data)
• Profiler marks observed errors as at-risk bits

2. BEEP [Patel+,MICRO’20]: knows the exact on-die ECC 
implementation  (i.e., its parity-check matrix)
• Same overall round-based strategy as Naive
• Data patterns designed using the known parity-check matrix

HARP performs 20.6- to 62.1% faster 
than the best-performing baseline 

HARP overcomes

all three profiling challenges 
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Case Study: DRAM Data-Retention
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•We consider a system that uses an ideal repair 
mechanism to safely reduce the DRAM refresh rate 

We study how effectively 
HARP, Naive, and BEEP 

identify errors

Data-retention errors
from reduced refresh rates



Case Study: DRAM Data-Retention
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•We measure the end-to-end bit error rate (BER) for 
each of the profilers

BEEP fails to 
reach zero BER

HARP always 
reaches zero BER



Case Study: DRAM Data-Retention
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HARP reaches zero BER 3.7x faster 
than the best-performing baseline 



Other Information in the Paper

•Detailed analysis of on-die ECC
• How on-die ECC introduces statistical dependence between 

post-correction errors
• Differences between direct and indirect errors
• Error profiling challenges introduced by on-die ECC

•Discussion about HARP’s design decisions

•More evaluation results
• Coverage of direct and indirect errors
• Analysis of profiler bootstrapping 
• Case study on the end-to-end memory bit error rate (BER)

•Detailed artifact description
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Other Information in the Paper

https://arxiv.org/abs/2109.12697
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Artifacts are Open-Sourced

https://github.com/CMU-SAFARI/HARP
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