
HARP: Practically and Effectively Identifying
Uncorrectable Errors in Memory Chips
That Use On-Die Error-Correcting Codes

Minesh Patel, Geraldo F. Oliveira, Onur Mutlu

https://github.com/CMU-SAFARI/HARP

https://arxiv.org/abs/2109.12697

https://github.com/CMU-SAFARI/HARP
https://arxiv.org/abs/2109.12697

Memory Errors

2

MRAMPCMDRAM

All suffer worsening error rates with
continual technology scaling

Memory Repair Mechanisms

•Repair mechanisms combat high memory error rates
• Identify and repair any bits that are at-risk of error

3

Memory Controller

Repair
Mechanism

Error
Profile

Unreliable Memory

Error-Prone
Data Store

read data
repaired
read data

write datawrite data

T
o

/f
ro

m
 C

P
U

Determined through
“Error Profiling”

Must know
which bits to repair

Profiling a Memory Chip

•Profiler’s goal: identify all bits that are at risk of error

4

Memory Chip
(Without On-Die ECC)

Data Store

raw data

Memory Chip
(With On-Die ECC)

Data Store

On-Die ECC

post-correction data

raw data

Profiler marks the bits
that are observed to fail

Profiler cannot see into the memory

Profiling a Memory Chip

•Profiler’s goal: identify all bits that are at risk of error

5

Memory Chip
(Without On-Die ECC)

Data Store

raw data

Memory Chip
(With On-Die ECC)

Data Store

On-Die ECC

post-correction data

raw data

Q: How does on-die ECC
affect error profiling?

Profiling a Memory Chip

•Profiler’s goal: identify all bits that are at risk of error

6

Memory Chip
(Without On-Die ECC)

Data Store

raw data

Memory Chip
(With On-Die ECC)

Data Store

On-Die ECC

post-correction data

raw data

Q: How does on-die ECC
affect error profiling?

Goal: understand and address the challenges
that on-die ECC introduces for error profiling

Challenges Introduced by On-Die ECC

7

Exponentially increases the at-risk bits
1

Harder to identify each at-risk bit
2

Interferes with data patterns
3

A small set of raw bit errors generates a combinatorially
larger set of at-risk bits

At-risk bits are exposed only when specific raw bit error
patterns occur

Data patterns must consider combinations of raw bits
instead of just individual bits alone

Key Observation: Two Sources of Errors

8

- -E - ECC Decoder - -E E

Upper-bounded by the ECC algorithm

Direct error1 Due to errors
in the memory chip

Indirect error2
Artifact of the
on-die ECC algorithm

Key Observation: Two Sources of Errors

9

- -E - ECC Decoder - -E E

Upper-bounded by the ECC algorithm

Direct error1 Due to errors
in the memory chip

Indirect error2
Artifact of the
on-die ECC algorithm

Key Idea: decouple profiling
for direct and indirect errors

Hybrid Active-Reactive Profiling (HARP)

10

Memory Controller

Repair
Mechanism

Error
Profile

Memory Chip

On-Die
ECC Data

Store

A
ct

iv
e

 P
ro

fi
le

r

on error detected ECC bypass

Active Profiling1
Quickly identifies direct errors

Reactive Profiling2
Safely identifies the indirect errors

T
o

/f
ro

m
 C

P
U

S
e

co
n

d
a

ry
 E

C
C

repaired
read data

write data

Hybrid Active-Reactive Profiling (HARP)

11

Memory Controller

Repair
Mechanism

Error
Profile

Memory Chip

On-Die
ECC Data

Store

A
ct

iv
e

 P
ro

fi
le

r

on error detected ECC bypass

Active Profiling1
Quickly identifies direct errors

Reactive Profiling2
Safely identifies the indirect errors

T
o

/f
ro

m
 C

P
U

S
e

co
n

d
a

ry
 E

C
C

repaired
read data

write dataHARP reduces the problem of
profiling with on-die ECC

to profiling without on-die ECC

Evaluating HARP

•We evaluate HARP using Monte-Carlo simulation
• Enables accurately measuring coverage (using a SAT solver)
• 1,036,980 total ECC words

• Across 2769 randomly-generated (71, 64) and (136, 128) ECC codes

• ≈14 CPU-years (20 days on 256 cores) of simulation time

•Artifacts are open-sourced

12

https://github.com/CMU-SAFARI/HARP

https://github.com/CMU-SAFARI/HARP

Evaluation Comparison Points

13

•We evaluate HARP’s error coverage and speed relative
to two baseline profiling algorithms:

1. Naive: round-based profiling that ignores on-die ECC
• Each round uses different data patterns (e.g., random data)
• Profiler marks observed errors as at-risk bits

2. BEEP [Patel+,MICRO’20]: knows the exact on-die ECC
implementation (i.e., its parity-check matrix)
• Same overall round-based strategy as Naive
• Data patterns designed using the known parity-check matrix

Evaluation Comparison Points

14

•We evaluate HARP’s error coverage and speed relative
to two baseline profiling algorithms:

1. Naive: round-based profiling that ignores on-die ECC
• Each round uses different data patterns (e.g., random data)
• Profiler marks observed errors as at-risk bits

2. BEEP [Patel+,MICRO’20]: knows the exact on-die ECC
implementation (i.e., its parity-check matrix)
• Same overall round-based strategy as Naive
• Data patterns designed using the known parity-check matrix

HARP performs 20.6- to 62.1% faster
than the best-performing baseline

HARP overcomes

all three profiling challenges

DRAM Chip

Data
Store

On-Die
ECC

Memory Controller

Repair
Mechanism

Error
Profile

T
o

/f
ro

m
 C

P
U

A
ct

iv
e

 P
ro

fi
le

r

S
e

co
n

d
a

ry
 E

C
C

Case Study: DRAM Data-Retention

15

•We consider a system that uses an ideal repair
mechanism to safely reduce the DRAM refresh rate

We study how effectively
HARP, Naive, and BEEP

identify errors

Data-retention errors
from reduced refresh rates

Case Study: DRAM Data-Retention

16

•We measure the end-to-end bit error rate (BER) for
each of the profilers

BEEP fails to
reach zero BER

HARP always
reaches zero BER

Case Study: DRAM Data-Retention

17

HARP reaches zero BER 3.7x faster
than the best-performing baseline

Other Information in the Paper

•Detailed analysis of on-die ECC
• How on-die ECC introduces statistical dependence between

post-correction errors
• Differences between direct and indirect errors
• Error profiling challenges introduced by on-die ECC

•Discussion about HARP’s design decisions

•More evaluation results
• Coverage of direct and indirect errors
• Analysis of profiler bootstrapping
• Case study on the end-to-end memory bit error rate (BER)

•Detailed artifact description
18

Other Information in the Paper

https://arxiv.org/abs/2109.12697

19

https://arxiv.org/abs/2109.12697

Artifacts are Open-Sourced

https://github.com/CMU-SAFARI/HARP

20

https://github.com/CMU-SAFARI/HARP

HARP: Practically and Effectively Identifying
Uncorrectable Errors in Memory Chips
That Use On-Die Error-Correcting Codes

Minesh Patel, Geraldo F. Oliveira, Onur Mutlu

https://github.com/CMU-SAFARI/HARP

https://arxiv.org/abs/2109.12697

https://github.com/CMU-SAFARI/HARP
https://arxiv.org/abs/2109.12697

